6ELEN018W - Applied Robotics
 Lecture 9: Robot Control - Intelligent Control Algorithms - Part II

Dr Dimitris C. Dracopoulos

The Most General and Challenging Control Problem for Robots

Robots need to operate:

- In unknown environments (be adaptive and including operation with sensor noise)
- Cope with high non-linear dynamics when interacting with other systems
- Be reconfigurable (in the case where part of the robot gets damaged and its dynamics change)

Markov Models

To formulate the general control problem for a robot, Markov models are useful.
A finite state Markov chain (stochastic finite state machine) can be defined:

- States: $s \in\{1, \ldots, m\}$, where m is finite.
- Starting state s_{0} : may be fixed or drawn from some a priori distribution $P_{0}\left(s_{0}\right)$.
- Transitions (dynamics): how the system moves from the current state s_{t} to the next state s_{t+1}.
- The transitions satisfy the first order Markov property:

$$
\begin{equation*}
P\left(s_{t+1} \mid s_{t}, s_{t-1}, \ldots, s_{0}\right)=P_{1}\left(s_{t+1} \mid s_{t}\right) \tag{1}
\end{equation*}
$$

Markov Chains (cont'd)

Markov chains define a stochastic system which generates a sequence of states:

$$
s_{0} \longrightarrow s_{1} \longrightarrow s_{2} \longrightarrow \ldots
$$

where s_{0} is drawn from $P_{0}\left(s_{0}\right)$ and each s_{t+1} from one step transition probabilities $P_{1}\left(s_{t+1} \mid s_{t}\right)$.

- A Markov chain can be represented as a state transition diagram.

Transition Probabilities

The conditional probability $p_{i j}$ is defined as the probability that a system which occupies state i, will occupy state j after its next transition.

- Since the system must be in some state after its next transition:

$$
\begin{equation*}
\sum_{j=1}^{N} p_{i j}=1 \tag{2}
\end{equation*}
$$

- Since $p_{i j}$ are probabilities:

$$
\begin{equation*}
0 \leq p_{i j} \leq 1 \tag{3}
\end{equation*}
$$

Example - The Robot Maker

A robot maker is involved in the novelty robot business. He may be in either of two states:

1. The robot he is currently producing has found great favour with the public.
2. The robot is out of favour.

Transition probabilities:

- If in first state 50% chance of remaining in state 1 , and 50% chance of unfortunate move to state 2 at following week.
- While in state 2 , he experiments with new robots and he may return to state 1 after a week with probability $\frac{2}{5}$, or remain unprofitable in state 2 with probability $\frac{3}{5}$.

$$
P=\left[p_{i j}\right]=\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \tag{4}\\
\frac{2}{5} & \frac{3}{5}
\end{array}\right]
$$

Markov Chain Problems

- Prediction: Probabilities that the system will be in state s_{k} after n transitions, given that at $n=0$ is it in a known state.
- Estimation: Calculation of transition probabilities given some observed sequences of state transitions.

The Prediction Problem

Example: What is the probability that the robot maker will be in state 1 after n weeks, given that he is in state 1 at the beginning of the n-week period? Define $\pi_{i}(n)$ as the probability that the system will occupy state i after n transitions, if its state at $n=0$ is known.
Then:

$$
\begin{gather*}
\sum_{i=1}^{N} \pi_{i}(n)=1 \tag{5}\\
\pi_{j}(n+1)=\sum_{i=1}^{N} \pi_{i}(n) p_{i j} \quad n=0,1,2, \ldots \tag{6}
\end{gather*}
$$

The Prediction Problem (cont'd)

Define a row vector of state probabilities $\pi(n)$ with components $\pi_{i}(n)$.
Then:

$$
\begin{equation*}
\pi(n+1)=\pi(n) P \quad n=0,1,2, \ldots \tag{7}
\end{equation*}
$$

Now:

$$
\begin{align*}
& \pi(1)=\pi(0) P \\
& \pi(2)=\pi(1) P=\pi(0) P^{2} \\
& \pi(3)=\pi(2) P=\pi(0) P^{3} \tag{8}
\end{align*}
$$

In general:

$$
\begin{equation*}
\pi(n)=\pi(0) P^{n} \quad n=0,1,2, \ldots \tag{9}
\end{equation*}
$$

Application to the Robot Maker Example

Assume that the robot maker starts with a successful robot, then $\pi_{1}(0)=1, \pi_{2}(0)=0$.

$$
\pi(1)=\pi(0) P=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{2}{5} & \frac{3}{5}
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]
$$

After 1 week the robot maker is equally likely to be successful or unsuccessful.
After 2 weeks:

$$
\pi(2)=\pi(1) P=\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{2} \\
\frac{2}{5} & \frac{3}{5}
\end{array}\right]=\left[\begin{array}{ll}
\frac{9}{20} & \frac{11}{20}
\end{array}\right]
$$

so that the robot maker is slightly more likely to be unsuccessful.

Example: Successive State Probabilities Starting with a Successful Robot

n	0	1	2	3	4	5	\ldots
$\pi_{1}(n)$	1	0.5	0.45	0.445	0.4445	0.44445	\ldots
$\pi_{2}(n)$	0	0.5	0.55	0.555	0.5555	0.55555	\ldots

As n becomes very large:

- $\pi_{1}(n)$ approaches $\frac{4}{9}$
- $\pi_{2}(n)$ approaches $\frac{5}{9}$

The Reinforcement Learning Problem for a Robot

$$
s_{0} \xrightarrow[r_{0}]{a_{0}} s_{1} \xrightarrow[r_{1}]{a_{1}} s_{2} \xrightarrow[r_{2}]{a_{2}}
$$

Goal: Learn to choose actions that maximise:

$$
r_{0}+\gamma r_{1}+\gamma^{2} r_{2}+\ldots
$$

where $0 \leq \gamma<1$

Robot's Learning Task

Execute actions in environment, observe results, and

- learn action policy $\pi: S \longrightarrow A$ that maximises

$$
E\left[r_{t}+\gamma r_{t+1}+\gamma^{2} r_{t+2}+\ldots\right]
$$

from any starting state in S

- here $0 \leq \gamma<1$ is the discount factor for future rewards

Value Function

How can a robot calculate the optimum action at each state?

- What if each state s_{i} has a value associated with it, measuring the total all future reward received after starting from this state and following a policy of actions?
- Then the robot could choose an action that will lead to a state with the highest value.
For each possible policy π the robot might adopt, we can define an evaluation function over states

$$
\begin{aligned}
V^{\pi}(s) & \equiv r_{t}+\gamma r_{t+1}+\gamma^{2} r_{t+2}+\ldots \\
& \equiv \sum_{i=0}^{\infty} \gamma^{i} r_{t+i}
\end{aligned}
$$

where r_{t}, r_{t+1}, \ldots are generated by following policy π starting at state s
Now, the task is to learn the optimal policy π^{*} :

$$
\pi^{*}(s)=\arg \max _{a}\left[r(s, a)+\gamma V^{*}(\delta(s, a))\right]
$$

Figure 1: $r(s, a)$ (immediate reward) values.

Figure 2: $V^{*}(s)$ values.

Figure 3: One optimal policy.

How to Calculate the V values?

- Select a move: Most of the time we move greedily, i.e. select the move that leads to the state with greatest value (Exploitation step).
- Occasionally, we select randomly from among the other moves instead (Exploration step).
How to do iteratively? Update the V for only greedy moves according to the formula:

$$
\begin{equation*}
V\left(S_{t}\right) \leftarrow V\left(S_{t}\right)+\alpha\left[V\left(S_{t+1}-V\left(S_{t}\right)\right]\right. \tag{10}
\end{equation*}
$$

where α is a small positive number (in the range between 0 and 1), which affects the rate of learning.

ϵ-Greedy Methods for Exploration vs Exploitation

- To make sure that we explore while we exploit as well, ϵ-greedy actions can be applied:
- Most of the time a greedy action is selected (i.e. the one leading to the maximum V value estimated so far).
- With probability ϵ we apply an action which is selected randomly from all the actions (including the greedy action) with equal probability.

Q Function - An Alternative to choose Robot Actions

Define new function very similar to V^{*}

$$
Q(s, a) \equiv r(s, a)+\gamma V^{*}(\delta(s, a))
$$

If agent learns Q, it can choose optimal action even without knowing δ ! (the function which describes the transition between the current state and the next one if the robot takes a specific action)

$$
\begin{gathered}
\pi^{*}(s)=\arg \max _{a}\left[r(s, a)+\gamma V^{*}(\delta(s, a))\right] \\
\pi^{*}(s)=\arg \max _{a} Q(s, a)
\end{gathered}
$$

Q is the evaluation function the agent will learn

Figure 4: $Q(s, a)$ values for the grid problem previously seen.

Training Rule to Learn Q

Note Q and V^{*} closely related:

$$
V^{*}(s)=\max _{a^{\prime}} Q\left(s, a^{\prime}\right)
$$

Which allows us to write Q recursively as

$$
\begin{aligned}
Q\left(s_{t}, a_{t}\right) & \left.=r\left(s_{t}, a_{t}\right)+\gamma V^{*}\left(\delta\left(s_{t}, a_{t}\right)\right)\right) \\
& =r\left(s_{t}, a_{t}\right)+\gamma \max _{a^{\prime}} Q\left(s_{t+1}, a^{\prime}\right)
\end{aligned}
$$

Let \hat{Q} denote learner's current approximation to Q. Consider training rule

$$
\hat{Q}(s, a) \leftarrow r+\gamma \max _{a^{\prime}} \hat{Q}\left(s^{\prime}, a^{\prime}\right)
$$

where s^{\prime} is the state resulting from applying action a in state s.

Q Learning Pseudocode for Deterministic Worlds

For each s, a initialise table entry $\hat{Q}(s, a) \longleftarrow 0$
Observe current state s
Do forever:

- Select an action a and execute it
- Receive immediate reward r
- Observe the new state s^{\prime}
- Update the table entry for $\hat{Q}(s, a)$ as follows:

$$
\hat{Q}(s, a) \leftarrow r+\gamma \max _{a^{\prime}} \hat{Q}\left(s^{\prime}, a^{\prime}\right)
$$

$-s \longleftarrow s^{\prime}$

Updating \hat{Q}

$$
\begin{aligned}
\hat{Q}\left(s_{1}, a_{r i g h t}\right) & \leftarrow r+\gamma \max _{a^{\prime}} \hat{Q}\left(s_{2}, a^{\prime}\right) \\
& \leftarrow 0+0.9 \max \{63,81,100\} \\
& \leftarrow 90
\end{aligned}
$$

notice if rewards non-negative, then

$$
(\forall s, a, n) \quad \hat{Q}_{n+1}(s, a) \geq \hat{Q}_{n}(s, a)
$$

and

$$
(\forall s, a, n) \quad 0 \leq \hat{Q}_{n}(s, a) \leq Q(s, a)
$$

Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V, Q by taking expected values

$$
\begin{align*}
V^{\pi}(s) & \equiv E\left[r_{t}+\gamma r_{t+1}+\gamma^{2} r_{t+2}+\ldots\right] \\
& \equiv E\left[\sum_{i=0}^{\infty} \gamma^{i} r_{t+i}\right] \\
& \equiv E\left[r_{t}+\gamma V^{\pi}(s+1)\right] \tag{11}\\
Q(s, a) & \equiv E\left[r(s, a)+\gamma V^{*}(\delta(s, a))\right]
\end{align*}
$$

Nondeterministic Case

Q learning generalises to nondeterministic worlds
Alter training rule to

$$
\hat{Q}_{n}(s, a) \leftarrow\left(1-\alpha_{n}\right) \hat{Q}_{n-1}(s, a)+\alpha_{n}\left[r+\max _{a^{\prime}} \hat{Q}_{n-1}\left(s^{\prime}, a^{\prime}\right)\right]
$$

where

$$
\alpha_{n}=\frac{1}{1+\operatorname{visits}_{n}(s, a)}
$$

Can still prove convergence of \hat{Q} to Q.

Temporal Difference Learning

Q learning (TD(0) algorithm): reduce discrepancy between successive Q estimates

One step time difference:

$$
Q^{(1)}\left(s_{t}, a_{t}\right) \equiv r_{t}+\gamma \max _{a} \hat{Q}\left(s_{t+1}, a\right)
$$

Why not two steps?

$$
Q^{(2)}\left(s_{t}, a_{t}\right) \equiv r_{t}+\gamma r_{t+1}+\gamma^{2} \max _{a} \hat{Q}\left(s_{t+2}, a\right)
$$

Or n ?
$Q^{(n)}\left(s_{t}, a_{t}\right) \equiv r_{t}+\gamma r_{t+1}+\cdots+\gamma^{(n-1)} r_{t+n-1}+\gamma^{n} \max _{a} \hat{Q}\left(s_{t+n}, a\right)$

Blend all of these:
$Q^{\lambda}\left(s_{t}, a_{t}\right) \equiv(1-\lambda)\left[Q^{(1)}\left(s_{t}, a_{t}\right)+\lambda Q^{(2)}\left(s_{t}, a_{t}\right)+\lambda^{2} Q^{(3)}\left(s_{t}, a_{t}\right)+\cdots\right]$

Families of Reinforcement Learning Algorithms

1. Dynamic Programming: based on Bellman equation (11), well developed mathematically, but require a complete and accurate model of the environment.
2. Monte Carlo Methods: do not require a model but not appropriate for step-by-step incremental learning.
3. Temporal Difference Methods (e.g. Q-learning (which is the $T D(0)$ algorithm), temporal difference learning): require no model, they are fully incremental, but are more complex to analyse.

Other Improvements on what was discussed

- Extend to continuous action, state: Replace \hat{Q} table with neural net or other generaliser
- Learn and use $\hat{\delta}: S \times A \longrightarrow S$

