6ELENO18W - Applied Robotics

Lecture 9: Robot Control - Intelligent Control
Algorithms - Part Il

Dr Dimitris C. Dracopoulos

The Most General and Challenging Control Problem for
Robots

Robots need to operate:
» In unknown environments (be adaptive and including
operation with sensor noise)
» Cope with high non-linear dynamics when interacting with
other systems
» Be reconfigurable (in the case where part of the robot gets
damaged and its dynamics change)

Markov Models

To formulate the general control problem for a robot, Markov
models are useful.

A finite state Markov chain (stochastic finite state machine) can
be defined:

» States: s € {1,...,m}, where m is finite.

P Starting state sp: may be fixed or drawn from some a priori
distribution Py(sp).

» Transitions (dynamics): how the system moves from the
current state s; to the next state s;;1.

» The transitions satisfy the first order Markov property:

P(5t+1\5t,5t—17 ceey 50) = P1(5t+1|5t) (1)

Markov Chains (cont'd)

Markov chains define a stochastic system which generates a
sequence of states:

So —>S1 —> S — ...

where sp is drawn from Py(sg) and each s;;1 from one step
transition probabilities P1(s+1(st)-
» A Markov chain can be represented as a state transition
diagram.

Transition Probabilities

The conditional probability p;; is defined as the probability that a
system which occupies state i, will occupy state j after its next
transition.

» Since the system must be in some state after its next
transition:
N
> =1 (2)
Jj=1

» Since pj; are probabilities:

0<pj<1 (3)

Example - The Robot Maker

A robot maker is involved in the novelty robot business. He may
be in either of two states:
1. The robot he is currently producing has found great favour
with the public.
2. The robot is out of favour.
Transition probabilities:
» If in first state 50% chance of remaining in state 1, and 50%
chance of unfortunate move to state 2 at following week.
> While in state 2, he experiments with new robots and he may
return to state 1 after a week with probability % or remain
unprofitable in state 2 with probability %

])

G1NN| =
[&I[V NI

P=lnl= |

172 3/5

@ -
—
2/5

Markov Chain Problems

» Prediction: Probabilities that the system will be in state sy
after n transitions, given that at n =0 is it in a known state.

» Estimation: Calculation of transition probabilities given some
observed sequences of state transitions.

The Prediction Problem

Example: What is the probability that the robot maker will be in

state 1 after n weeks, given that he is in state 1 at the beginning
of the n-week period?

Define 7;(n) as the probability that the system will occupy state i
after n transitions, if its state at n = 0 is known.

Then:

The Prediction Problem (cont'd)

Define a row vector of state probabilities 7(n) with components

71',-(n).
Then:
w(n+1) =mn(n)P n=0,1,2,... (7)
Now:
(1) = w(0)P
m(2) = n(1)P = =(0)P?
(3) = n(2)P =~=(0)P?
(8)
In general:

7(n) =7(0)P" n=0,1,2,... (9)

Application to the Robot Maker Example

Assume that the robot maker starts with a successful robot, then
7m1(0) =1, m2(0) = 0.

1

-5

3 2 2
After 1 week the robot maker is equally likely to be successful or

unsuccessful.
_[ou
~ 120 20

After 2 weeks:
so that the robot maker is slightly more likely to be unsuccessful.

(1) =w(0)P =[1 Q] [

G1NN =

CIUNN| =
CIHON| =

"(2) = (P =1[; ; [

Example: Successive State Probabilities Starting with a
Successful Robot

n 0 1 2 3 4 5
mi(n) 1 0.5 0.45 0.445 0.4445 0.44445
m(n) 0 0.5 0.55 0.555 0.5555 0.55555

As n becomes very large:

» m1(n) approaches

oo Ol

» mo(n) approaches

The Reinforcement Learning Problem for a Robot

Robot
State/l/Reward Xction
‘ Environment ‘
a a a
) 0 s; 1) 2
"o 1)

Goal: Learn to choose actions that maximise:

ro—l—’yr1+*y2r2—|—...,
where 0 <y <1

Robot's Learning Task

Execute actions in environment, observe results, and

» learn action policy m : S — A that maximises
El[re +yre41 + Vo + ..]

from any starting state in S

» here 0 <~ < 1 is the discount factor for future rewards

Value Function
How can a robot calculate the optimum action at each state?

» What if each state s; has a value associated with it,
measuring the total all future reward received after starting
from this state and following a policy of actions?

» Then the robot could choose an action that will lead to a
state with the highest value.

For each possible policy 7 the robot might adopt, we can define an
evaluation function over states

V7™(s) =r+ree1 +9°reo + ...

x

_ i

= E Y re4i
i=0

where ri, rey1, ... are generated by following policy 7 starting at
state s
Now, the task is to learn the optimal policy 7*:

(s) = arg maax[r(s7 a) +~yV(4(s, a))]

0
0 100
—1 —
A o A o A
ol ol 100 |
0—-> Ol
-— -—
0 0

Figure 1: r(s, a) (immediate reward) values.

Figure 2: V*(s) values.

Figure 3: One optimal policy.

How to Calculate the V values?

» Select a move: Most of the time we move greedily, i.e. select
the move that leads to the state with greatest value
(Exploitation step).

» Occasionally, we select randomly from among the other moves
instead (Exploration step).

How to do iteratively? Update the V for only greedy moves
according to the formula:

V(Se) ¢ V(Se) + a[V(Ses1 — V(S:)] (10)

where « is a small positive number (in the range between 0 and 1),
which affects the rate of learning.

e-Greedy Methods for Exploration vs Exploitation

> To make sure that we explore while we exploit as well,
e-greedy actions can be applied:

» Most of the time a greedy action is selected (i.e. the one
leading to the maximum V value estimated so far).

> With probability ¢ we apply an action which is selected
randomly from all the actions (including the greedy action)
with equal probability.

@ Function - An Alternative to choose Robot Actions

Define new function very similar to V*

Q(s,a) =r(s,a) +yV*(d(s, a))

If agent learns Q, it can choose optimal action even without
knowing d! (the function which describes the transition between
the current state and the next one if the robot takes a specific
action)

7(s) = arg m;x[r(s, a)+~yV*(4(s, a))]

7*(s) = arg max Q(s, a)

Q is the evaluation function the agent will learn

0
90 100 G
81
72 81
81 90 100
81 90
72 81

Figure 4: Q(s, a) values for the grid problem previously seen.

Training Rule to Learn Q
Note Q and V* closely related:
V*(s) = max Q(s,a")
Which allows us to write @ recursively as
Q(st:ar) = r(se,ar) + 7V (0(st, at)))
= r(st,ar) +7 max Q(st+1,2)

Let Q denote learner’s current approximation to Q. Consider
training rule

Q(s, a) < r + -y max @(s’, a')
a/

where s’ is the state resulting from applying action a in state s.

Q@ Learning Pseudocode for Deterministic Worlds

For each s, a initialise table entry Q(s,a) «— 0
Observe current state s

Do forever:
> Select an action a and execute it
P> Receive immediate reward r
» Observe the new state s’
» Update the table entry for Q(s, a) as follows:

Q(s,a) < r+~ymax Q(s', a)
a/

Updating @

Ayight

Initial state: s, Next state: S,

O(Sly aright) — r—+ Y maex 0(525 3/)
<~ 0-+0.9 max{63,81,100}
«— 90
notice if rewards non-negative, then

(Vs,3,n) Qni1(s,3) = Qu(s,)

and
(¥s,a,n) 0< Qn(s,a) < Q(s,a)

Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V, Q by taking expected values

V7™(s) =E[r+yr+1+ Y reio + ..]
o0
= E[Z V' reti]
i=0

=E[rn+~yV™(s+1)] (11)

Q(s,a) = E[r(s,a) + vV*(4(s, a))]

Nondeterministic Case

Q learning generalises to nondeterministic worlds
Alter training rule to

Qn(s,a) < (1 — an)Qn_1(s, a) + anlr + max Qn_1(s', a)]

where
1

W= visitsp(s, a)

Can still prove convergence of Q to Q.

Temporal Difference Learning

Q learning (TD(0) algorithm): reduce discrepancy between
successive) estimates

One step time difference:
Q(l)(st, a)=r+7 max Q(stH, a)
Why not two steps?
Q@) (st,ac) = re + yrep1 +97 max Q(st+2, a)
Or n?

n—1)

Q(n)(st, at)=re+yrep1+ -+ ’y(revn—1+7" m;ax O(5t+n; a)

Blend all of these:

Q@\(st,ar) = (1-1) [Q(l)(st, at) + AQP (s, ar) + N2Q) (s, a¢) + - -

Families of Reinforcement Learning Algorithms

1. Dynamic Programming. based on Bellman equation (11), well
developed mathematically, but require a complete and
accurate model of the environment.

2. Monte Carlo Methods: do not require a model but not
appropriate for step-by-step incremental learning.

3. Temporal Difference Methods (e.g. Q-learning (which is the
TD(0) algorithm), temporal difference learning): require no
model, they are fully incremental, but are more complex to
analyse.

Other Improvements on what was discussed

> Extend to continuous action, state: Replace @ table with
neural net or other generaliser

» Learnanduse 6 : Sx A — S

