
Dimitris C. Dracopoulos 1/29

6ELEN018W - Applied Robotics
Lecture 9: Robot Control - Intelligent Control

Algorithms - Part II

Dr Dimitris C. Dracopoulos

Dimitris C. Dracopoulos 2/29

The Most General and Challenging Control Problem for
Robots

Robots need to operate:

▶ In unknown environments (be adaptive and including
operation with sensor noise)

▶ Cope with high non-linear dynamics when interacting with
other systems

▶ Be reconfigurable (in the case where part of the robot gets
damaged and its dynamics change)

Dimitris C. Dracopoulos 3/29

Markov Models

To formulate the general control problem for a robot, Markov
models are useful.
A finite state Markov chain (stochastic finite state machine) can
be defined:

▶ States: s ∈ {1, . . . ,m}, where m is finite.

▶ Starting state s0: may be fixed or drawn from some a priori
distribution P0(s0).

▶ Transitions (dynamics): how the system moves from the
current state st to the next state st+1.

▶ The transitions satisfy the first order Markov property:

P(st+1|st , st−1, . . . , s0) = P1(st+1|st) (1)

Dimitris C. Dracopoulos 4/29

Markov Chains (cont’d)

Markov chains define a stochastic system which generates a
sequence of states:

s0 −→ s1 −→ s2 −→ . . .

where s0 is drawn from P0(s0) and each st+1 from one step
transition probabilities P1(st+1|st).
▶ A Markov chain can be represented as a state transition

diagram.

Dimitris C. Dracopoulos 5/29

Transition Probabilities

The conditional probability pij is defined as the probability that a
system which occupies state i , will occupy state j after its next
transition.

▶ Since the system must be in some state after its next
transition:

N∑
j=1

pij = 1 (2)

▶ Since pij are probabilities:

0 ≤ pij ≤ 1 (3)

Dimitris C. Dracopoulos 6/29

Example - The Robot Maker
A robot maker is involved in the novelty robot business. He may
be in either of two states:

1. The robot he is currently producing has found great favour
with the public.

2. The robot is out of favour.

Transition probabilities:
▶ If in first state 50% chance of remaining in state 1, and 50%

chance of unfortunate move to state 2 at following week.
▶ While in state 2, he experiments with new robots and he may

return to state 1 after a week with probability 2
5 , or remain

unprofitable in state 2 with probability 3
5 .

P = [pij] =

[
1
2

1
2

2
5

3
5

]
(4)

1 2

1/2

1/2

2/5

3/5

Dimitris C. Dracopoulos 7/29

Markov Chain Problems

▶ Prediction: Probabilities that the system will be in state sk
after n transitions, given that at n = 0 is it in a known state.

▶ Estimation: Calculation of transition probabilities given some
observed sequences of state transitions.

Dimitris C. Dracopoulos 8/29

The Prediction Problem

Example: What is the probability that the robot maker will be in
state 1 after n weeks, given that he is in state 1 at the beginning
of the n-week period?
Define πi (n) as the probability that the system will occupy state i
after n transitions, if its state at n = 0 is known.
Then:

N∑
i=1

πi (n) = 1 (5)

πj(n + 1) =
N∑
i=1

πi (n)pij n = 0, 1, 2, . . . (6)

Dimitris C. Dracopoulos 9/29

The Prediction Problem (cont’d)

Define a row vector of state probabilities π(n) with components
πi (n).
Then:

π(n + 1) = π(n)P n = 0, 1, 2, . . . (7)

Now:

π(1) = π(0)P

π(2) = π(1)P = π(0)P2

π(3) = π(2)P = π(0)P3

(8)

In general:
π(n) = π(0)Pn n = 0, 1, 2, . . . (9)

Dimitris C. Dracopoulos 10/29

Application to the Robot Maker Example

Assume that the robot maker starts with a successful robot, then
π1(0) = 1, π2(0) = 0.

π(1) = π(0)P = [1 0]

[
1
2

1
2

2
5

3
5

]
=

[
1

2

1

2

]
After 1 week the robot maker is equally likely to be successful or
unsuccessful.
After 2 weeks:

π(2) = π(1)P = [
1

2

1

2
]

[
1
2

1
2

2
5

3
5

]
=

[
9

20

11

20

]
so that the robot maker is slightly more likely to be unsuccessful.

Dimitris C. Dracopoulos 11/29

Example: Successive State Probabilities Starting with a
Successful Robot

n 0 1 2 3 4 5 ...

π1(n) 1 0.5 0.45 0.445 0.4445 0.44445 ...

π2(n) 0 0.5 0.55 0.555 0.5555 0.55555 ...

As n becomes very large:

▶ π1(n) approaches
4
9

▶ π2(n) approaches
5
9

Dimitris C. Dracopoulos 12/29

The Reinforcement Learning Problem for a Robot

Agent

Environment

State Reward Action

0
s

1
s

2
s0

a
1

a
2

a

0
r

1
r

2
r

...

 Robot

Goal: Learn to choose actions that maximise:

r0 + γr1 + γ2r2 + . . . ,

where 0 ≤ γ < 1

Dimitris C. Dracopoulos 13/29

Robot’s Learning Task

Execute actions in environment, observe results, and

▶ learn action policy π : S −→ A that maximises

E [rt + γrt+1 + γ2rt+2 + . . .]

from any starting state in S

▶ here 0 ≤ γ < 1 is the discount factor for future rewards

Dimitris C. Dracopoulos 14/29

Value Function
How can a robot calculate the optimum action at each state?
▶ What if each state si has a value associated with it,

measuring the total all future reward received after starting
from this state and following a policy of actions?

▶ Then the robot could choose an action that will lead to a
state with the highest value.

For each possible policy π the robot might adopt, we can define an
evaluation function over states

V π(s) ≡ rt + γrt+1 + γ2rt+2 + ...

≡
∞∑
i=0

γ i rt+i

where rt , rt+1, . . . are generated by following policy π starting at
state s
Now, the task is to learn the optimal policy π∗:

π∗(s) = argmax
a

[r(s, a) + γV ∗(δ(s, a))]

Dimitris C. Dracopoulos 15/29

G

100

100

0

0

0

0

0

0

0

0

0

0

0

Figure 1: r(s, a) (immediate reward) values.

Dimitris C. Dracopoulos 16/29

G100

10090

90

81

0

Figure 2: V ∗(s) values.

Dimitris C. Dracopoulos 17/29

G

Figure 3: One optimal policy.

Dimitris C. Dracopoulos 18/29

How to Calculate the V values?

▶ Select a move: Most of the time we move greedily, i.e. select
the move that leads to the state with greatest value
(Exploitation step).

▶ Occasionally, we select randomly from among the other moves
instead (Exploration step).

How to do iteratively? Update the V for only greedy moves
according to the formula:

V (St)← V (St) + α[V (St+1 − V (St)] (10)

where α is a small positive number (in the range between 0 and 1),
which affects the rate of learning.

Dimitris C. Dracopoulos 19/29

ϵ-Greedy Methods for Exploration vs Exploitation

▶ To make sure that we explore while we exploit as well,
ϵ-greedy actions can be applied:

▶ Most of the time a greedy action is selected (i.e. the one
leading to the maximum V value estimated so far).

▶ With probability ϵ we apply an action which is selected
randomly from all the actions (including the greedy action)
with equal probability.

Dimitris C. Dracopoulos 20/29

Q Function - An Alternative to choose Robot Actions

Define new function very similar to V ∗

Q(s, a) ≡ r(s, a) + γV ∗(δ(s, a))

If agent learns Q, it can choose optimal action even without
knowing δ! (the function which describes the transition between
the current state and the next one if the robot takes a specific
action)

π∗(s) = argmax
a

[r(s, a) + γV ∗(δ(s, a))]

π∗(s) = argmax
a

Q(s, a)

Q is the evaluation function the agent will learn

Dimitris C. Dracopoulos 21/29

G
10090

100

81

90

81

81

90

81

72

72

81

0

Figure 4: Q(s, a) values for the grid problem previously seen.

Dimitris C. Dracopoulos 22/29

Training Rule to Learn Q

Note Q and V ∗ closely related:

V ∗(s) = max
a′

Q(s, a′)

Which allows us to write Q recursively as

Q(st , at) = r(st , at) + γV ∗(δ(st , at)))

= r(st , at) + γmax
a′

Q(st+1, a
′)

Let Q̂ denote learner’s current approximation to Q. Consider
training rule

Q̂(s, a)← r + γmax
a′

Q̂(s ′, a′)

where s ′ is the state resulting from applying action a in state s.

Dimitris C. Dracopoulos 23/29

Q Learning Pseudocode for Deterministic Worlds

For each s, a initialise table entry Q̂(s, a)←− 0

Observe current state s

Do forever:

▶ Select an action a and execute it

▶ Receive immediate reward r

▶ Observe the new state s ′

▶ Update the table entry for Q̂(s, a) as follows:

Q̂(s, a)← r + γmax
a′

Q̂(s ′, a′)

▶ s ←− s ′

Dimitris C. Dracopoulos 24/29

Updating Q̂

100

81

R
63

72

Initial state: s
1

10090

81

R
63

Next state: s
2

a
right

Q̂(s1, aright) ← r + γmax
a′

Q̂(s2, a
′)

← 0 + 0.9 max{63, 81, 100}
← 90

notice if rewards non-negative, then

(∀s, a, n) Q̂n+1(s, a) ≥ Q̂n(s, a)

and
(∀s, a, n) 0 ≤ Q̂n(s, a) ≤ Q(s, a)

Dimitris C. Dracopoulos 25/29

Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V ,Q by taking expected values

V π(s) ≡ E [rt + γrt+1 + γ2rt+2 + . . .]

≡ E [
∞∑
i=0

γ i rt+i]

≡ E [rt + γV π(s + 1)] (11)

Q(s, a) ≡ E [r(s, a) + γV ∗(δ(s, a))]

Dimitris C. Dracopoulos 26/29

Nondeterministic Case

Q learning generalises to nondeterministic worlds

Alter training rule to

Q̂n(s, a)← (1− αn)Q̂n−1(s, a) + αn[r +max
a′

Q̂n−1(s
′, a′)]

where

αn =
1

1 + visitsn(s, a)

Can still prove convergence of Q̂ to Q.

Dimitris C. Dracopoulos 27/29

Temporal Difference Learning
Q learning (TD(0) algorithm): reduce discrepancy between
successive Q estimates

One step time difference:

Q(1)(st , at) ≡ rt + γmax
a

Q̂(st+1, a)

Why not two steps?

Q(2)(st , at) ≡ rt + γrt+1 + γ2max
a

Q̂(st+2, a)

Or n?

Q(n)(st , at) ≡ rt + γrt+1 + · · ·+ γ(n−1)rt+n−1 + γn max
a

Q̂(st+n, a)

Blend all of these:

Qλ(st , at) ≡ (1−λ)
[
Q(1)(st , at) + λQ(2)(st , at) + λ2Q(3)(st , at) + · · ·

]

Dimitris C. Dracopoulos 28/29

Families of Reinforcement Learning Algorithms

1. Dynamic Programming: based on Bellman equation (11), well
developed mathematically, but require a complete and
accurate model of the environment.

2. Monte Carlo Methods: do not require a model but not
appropriate for step-by-step incremental learning.

3. Temporal Difference Methods (e.g. Q-learning (which is the
TD(0) algorithm), temporal difference learning): require no
model, they are fully incremental, but are more complex to
analyse.

Dimitris C. Dracopoulos 29/29

Other Improvements on what was discussed

▶ Extend to continuous action, state: Replace Q̂ table with
neural net or other generaliser

▶ Learn and use δ̂ : S × A −→ S

