6ELEN018W - Applied Robotics
 Lecture 4: Robot Motion - 3D Velocity Kinematics

Dr Dimitris C. Dracopoulos

Previously - 2D Pose and Forward Kinematics

The pose of the end-effector is:

$$
\begin{equation*}
{ }^{0} \boldsymbol{\xi}_{E}=\boldsymbol{\xi}^{r}\left(q_{0}\right) \oplus \boldsymbol{\xi}^{t_{x}}(a 1) \oplus \boldsymbol{\xi}^{r}\left(q_{1}\right) \oplus \boldsymbol{\xi}^{t_{x}}(a 2) \tag{1}
\end{equation*}
$$

Previously - 2D Pose and Forward Kinematics (cont'd)

In Python toolbox:

```
>>> a1 = 1
>>> a2 = 1
>>> e = ET2.R()*ET2.tx(a1)*ET2.R()*ET2.tx(a2)
>>> e.fkine(np.deg2rad([90, 30])).printline()
Equivalently:
```

```
>>> T = SE2.Rot(np.deg2rad(90)) * SE2.Tx(a1) \
```

>>> T = SE2.Rot(np.deg2rad(90)) * SE2.Tx(a1) \
* SE2.Rot(np.deg2rad(30)) * SE2.Tx(a2)

```
    * SE2.Rot(np.deg2rad(30)) * SE2.Tx(a2)
```

>>> T.printline()
>>> e.joints()

Pose and Forward Kinematics in 3D

Similar approach with the 2D case, apply successive transformations using the 3D homogeneous transformation matrices of size 4×4.

```
>>> a1 =1
```

>>> a2 = 1
$\ggg \mathrm{e}=\mathrm{ET} \cdot \mathrm{Rz}() * \mathrm{ET} \cdot \mathrm{Ry}()$)
* ET.tz(a1) * ET.Ry() * ET.tz(a2) \}
* ET.Rz() * ET.Ry() * ET.Rz()
>>> e.n \# number of joints
>>> e.structure

Forward Kinematics as a Chain of Robot Links

A robot can be described as a sequence of links which are attached to joints.
In 2D:


```
>>> a1=1; a2 =1;
>>> link1 = Link2(ET2.R(), name="link1")
>>> link2 = Link2(ET2.tx(a1)*ET2.R(), name="link2",parent=link1)
>>> link3 = Link2(ET2.tx(a2), name="link3", parent=link2)
>>> robot = ERobot2([link1, link2, link3], name="my_robot")
```


Forward Kinematics as a Chain of Robot Links (cont'd)

Pose of the end-effector for a specific configuration of the joint angles:
>>> robot.fkine(np.deg2rad([30, 40])).printline()
Plot at this configuration:
robot.plot(np.deg2rad([30, 40]));
Animation between an initial and a target configuration:

```
>>> q = np.array([np.linspace(0, pi, 100), \
    np.linspace(0, -2*pi, 100)]);
>>> q = q.T; # take the transpose of q
```

>> robot.plot(q)

Forward Kinematics as a Chain of Robot Links - 3D Case

Rotation about z, rotation about y, translation along z by a_{1}, rotation about y, translation along z by a_{2}, rotation about z, rotation about y, rotation about z.

$$
\begin{aligned}
\mathrm{e}= & \mathrm{ET} \cdot \operatorname{Rz}() * \operatorname{ET} \cdot \operatorname{Ry}() * \operatorname{ET} \cdot \mathrm{tz}(\mathrm{a} 1) * \operatorname{ET} \cdot \operatorname{Ry}() * \mathrm{ET} \cdot \mathrm{tz}(\mathrm{a} 2) * \mathrm{ET} \cdot \operatorname{Rz}() \backslash \\
& * \operatorname{ET} \cdot \operatorname{Ry}() * \operatorname{ET} \cdot \operatorname{Rz}() * \operatorname{ET} \cdot \operatorname{Rx}()
\end{aligned}
$$

Pre-defined Robot Models in the Python Robotics Toolbox

>>> models.list(type="ETS")

class	manufacturer	DoF	structure
Panda	Franka Emika	7	RRRRRRR
Frankie	Franka Emika, Omron	9	RPRRRRRRRR
Puma560	Unimation	6	RRRRRR
Planar_Y		6	RRRRRRR
GenericSeven\|	Jesse's Imagination	7	RRRRRRR
XYPanda	Franka Emika	9	PPRRRRRRR

To create an instance of a Puma560 robot:
>>> p560 = models.ETS.Puma560()

Pre-defined Robot Models in the Python Robotics Toolbox (cont'd)

A new configuration can be added:
>>> p560.addconfiguration("my_config", \}
$[0.1,0.2,0.3,0.4,0.5,0.6])$

```
# and accessed as a dictionary
>>> p560.configs["my_config"]
```

The forward kinematics for a configuration can be computed:
>>> p560.fkine(p560.qr)
\# print the pose in compact form
>>> p560.fkine(p560.qr).printline()
plotted in a configuration:
>>> p560.plot(p560.qr)

Motion in 3D

Previously covered: If the joints move at specific velocities, what is the velocity of the end-effector? (2D case)

- Rate of change of position: Speed (velocity): $\boldsymbol{v}=(\dot{x}, \dot{y}, \dot{z})$
- Rate of change of orientation: Angular velocity:

$$
\boldsymbol{\omega}=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)=\left(q_{x}, q_{y}, q_{z}\right)
$$

All of these are with reference to a specific coordinate frame (or simply the reference coordinate frame).

Translational and Rotational Motion of a Robot's

 End-Effector

The spatial velocity (twist) consists of:

$$
\boldsymbol{\nu}=\left(v_{x}, v_{y}, v_{z}, \omega_{x}, \omega_{y}, \omega_{z}\right)
$$

Previously - End-Effector Velocity in a 2-Joint Robot (2D)

$$
\binom{x}{y}=\binom{a_{1} \cos \left(q_{1}\right)+a_{2} \cos \left(q_{1}+q_{2}\right)}{a_{1} \sin \left(q_{1}\right)+a_{2} \sin \left(q_{1}+q_{2}\right)}
$$

- If joint angles change over time (the robot moves):

$$
q_{1}=q_{1}(t), \quad q_{2}=q_{2}(t)
$$

- The velocity of the end-effector can be calculated by computing the derivative (using the chain rule):

$$
\begin{aligned}
& \dot{x}=-a_{1} \dot{q}_{1} \sin (q 1)-a_{2}\left(\dot{q}_{1}+\dot{q}_{2}\right) \sin (q 1+q 2) \\
& \dot{y}=a_{1} \dot{q}_{1} \cos \left(q_{1}\right)+a_{2}\left(\dot{q}_{1}+\dot{q}_{2}\right) \cos (q 1+q 2)
\end{aligned}
$$

Previously - End-Effector Velocity in a 2-Joint Robot (2D)

$$
\binom{\dot{x}}{\dot{y}}=\binom{-a_{1} \sin (q 1)-a_{2} \sin (q 1+q 2)-a_{2} \sin (q 1+q 2)}{a_{1} \cos \left(q_{1}\right)+a_{2} \cos (q 1+q 2) a_{2} \cos (q 1+q 2)}\binom{\dot{q}_{1}}{\dot{q}_{2}}
$$

The Jacobian $\boldsymbol{J}(\boldsymbol{q})$:

$$
\boldsymbol{v}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}
$$

Jacobian Calculation in the Python Robotics Toolbox

>>> import sympy
>>> a1, a2 = sympy.symbols("a1, a2")
$\ggg \mathrm{e}=$ ERobot2 (ET2.R() $*$ ET2.tx (a1) *ET2.R()*ET2.tx (a2))
>>> q = symbols("q:2") \# sympy is already imported
The forward kinematics are calculated as:
>>> TE = e.fkine(q)
Translation part, i.e location of end-effector $\boldsymbol{p}=(\mathrm{x}, \mathrm{y})$:
>>> p = TE.t
The Jacobian is calculated:
>>> J = Matrix(p).jacobian(q)
The velocity of the end-effector is calculated as:

$$
\begin{equation*}
\dot{\boldsymbol{p}}=J(\boldsymbol{q}) \dot{\boldsymbol{q}} \tag{2}
\end{equation*}
$$

General Form of the Forward Kinematics using the Jacobian

The derivative of the spatial velocity $\boldsymbol{\nu}$ of the end-effector can be written as:

$$
\boldsymbol{\nu}=\left(\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}}
$$

where $\boldsymbol{J}(\boldsymbol{q})$ is an $M \times N$ matrix.

- $M=6$ is the dimension of the task space (3 translational and 3 rotational velocity components)
- N is the number of robot joints

Calculating the Jacobian of Robots in the Python Robotics Toolbox

Call the jacob0 method on any robot object in the toolbox.
>>> p560 = models.ETS.Puma560()
>>> p560.jacob0(p560.qr) \# Jacobian for the qr configuration

- One column per joint.
>>> p560.teach(p560.qr)

Velocity of a n-joint Robot Arm

Previous approach does not scale well for more joints. Even for a 6 -joint robot it will take too much to do the calculations.
How to do this then?

- Relationship between a change of a single joint and the change in the end-effector.

Simple Numerical Calculation of Derivatives

In a numerical simulation, if we take small enough time steps, the derivative can be calculated as:

$$
\begin{equation*}
\frac{f\left(x_{t+1}\right)-f\left(x_{t}\right)}{\Delta t} \tag{3}
\end{equation*}
$$

Forward kinematics:

- An approximation of the forward kinematics changes as a function of changes of a single joint angle.
- The mathematical description of this can be a bit difficult, therefore it will be skipped.
- One way to think about this, is that the total spatial velocity is the sum of the individual components due to a change in each angle (q_{1}, i.e column 1 of the Jacobian, q_{2}, i.e column 2 of the Jacobian, etc).
- Use the jacob0 method of the toolbox instead.

How to achieve a Specific End-Effector Spatial Velocity

What velocities the joints should have in order to achieve a specific end-effector spatial velocity?
Forward kinematics:

$$
\nu=J(\boldsymbol{q}) \dot{\boldsymbol{q}}
$$

Inverting the Jacobian:

$$
\dot{\boldsymbol{q}}=\boldsymbol{J}(\boldsymbol{q})^{-1} \nu
$$

For a 6 -joint robot, $J(\boldsymbol{q})$ is a 6×6 matrix, therefore its inverse can be calculated.

- Unless the matrix is singular (the determinant is zero), in which case the inverse cannot be calculated!

Example: Inverting the Jacobian matrix for a Puma560 Robot

```
>>> p560 = models.ETS.Puma560()
>>> J = p560.jacob0(p560.qr)
>>> np.linalg.det(J)
>>> J = p560.jacob0(p560.qz)
# add a new configuration
>>> p560.addconfiguration("qn", [0, math.pi/4, math.pi, \
    0, math.pi/4, 0])
>>> J = p560.jacob0(p560.configs["qn"])
>>> np.linalg.det(J)
>>> np.linalg.inv(J)
```


How to Control the Spatial Velocity of an End-Effector?

1. Choose the spatial velocity $\boldsymbol{\nu}=\left(v_{x}, v_{y}, v_{z}, \omega_{x}, \omega_{y}, \omega_{z}\right)$
2. Calculate the required joint velocities:

$$
\dot{\boldsymbol{q}}=\boldsymbol{J}(\boldsymbol{q})^{-1} \nu
$$

3. Move the joints at that speed using the actuators (control motors)
4. But after a short time, the angle \boldsymbol{q} have changed, therefore the above calculation is not valid any more!
5. The Jacobian $J(\boldsymbol{q})$ needs to be re-calculated.

How to Write a Program to Control the Spatial Velocity of

 the End-Effector- Choose the spatial velocity $\boldsymbol{\nu}=\left(v_{x}, v_{y}, v_{z}, \omega_{x}, \omega_{y}, \omega_{z}\right)$

Repeat for ever:

1. Calculate the required joint velocities:

$$
\dot{\boldsymbol{q}}=\boldsymbol{J}\left(\boldsymbol{q}_{\boldsymbol{k}}\right)^{-1} \boldsymbol{\nu}
$$

2. Move the joints at that speed using the actuators (control motors)
3. Compute next joint angles: $\boldsymbol{q}_{k+1}=\boldsymbol{q}_{k}+\Delta_{t} \dot{\boldsymbol{q}}$
4. $k=k+1$

Under-Actuated and Over-Actuated Robots

Under-actuated Robots:

- A robot with $N<6$ joints is under-actuated.
- The Jacobian is not a square matrix therefore it cannot be inverted.
- Remove from the spatial velocity components, the ones which cannot be controlled and invert the Jacobian.
Over-actuated Robots:
- A robot with $N>6$ joints is over-actuated (spare joints).
- The Jacobian is not a square matrix therefore it cannot be inverted.
- A matrix called pseudo-inverse can be computed $\dot{\boldsymbol{q}}=\boldsymbol{J}(\boldsymbol{q})^{+} \boldsymbol{\nu}$.

$$
\boldsymbol{J}^{+}=\left(\boldsymbol{J}^{T} \boldsymbol{J}\right)^{-1} \boldsymbol{J}^{T}
$$

