
Dimitris C. Dracopoulos 1/31

6ELEN018W - Applied Robotics
Lecture 2: Position and Orientation of a Robot

Dr Dimitris C. Dracopoulos

Dimitris C. Dracopoulos 2/31

Why a Robot needs to know its Location?

A robot cannot perform any useful task (achieve its goal) if it is not
able to detect its position and orientation within the environment.

▶ A Robot is a goal oriented machine that can sense, plan and
act. (Peter Corke)

Dimitris C. Dracopoulos 3/31

Pose of an Object

The position and orientation of an object (robot) is defined as its
pose.

The motion ξ of a robot is defined with respect to its initial pose.

▶ xξy denotes the motion from pose x to pose y .

Dimitris C. Dracopoulos 4/31

Pose (cont’d)

Same motion ξ starting from 2 different initial poses:

A pose of a robot can only be defined relatively to some other
reference pose.

Dimitris C. Dracopoulos 5/31

Pose (cont’d)
Composition of successive motions: 0ξ1 followed by 1ξ2:

0ξ2 =
0 ξ1 ⊕1 ξ2 (1)

▶ The order of motions matters! Composition of motions is not
a commutative operation!

The inverse motion is denoted by ⊖:

yξx = ⊖xξy (2)

Dimitris C. Dracopoulos 6/31

Coordinate Frames

To describe relative pose, 2 transformations are needed:

▶ translation

▶ rotation

To achieve this, a coordinate frame is attached to the body of a
robot:

Dimitris C. Dracopoulos 7/31

Location of a Point in Space
A point P can be described with respect to different coordinate
vectors:

Ap with respect to frame {A} or Bp with respect to frame {B}.

Ap = Aξ
B · Bp (3)

where the · operator transforms the coordinate vector from one
coordinate frame to another.

▶ Aξ
B · Bp is the motion from {A} to {B} and then to P.

Dimitris C. Dracopoulos 8/31

Reference Frames in Real World Robots

Dimitris C. Dracopoulos 9/31

Pose Graphs

A pose graph is a directed graph which consists of:

▶ Vertices (poses)

▶ Edges with arrows (relative poses or motions)

Black arrows represent known relative poses, and the gray arrows
are un- known relative poses that need to determined.

Dimitris C. Dracopoulos 10/31

The Real World Robot

In order for the robot to grasp the workpiece, we need to know its
pose relative to the robot’s end effector: EξP .
How to do this?

1. Look for 2 different equivalent paths which have the same
start and end pose, one of the paths should include the
unknown.

2. Solve for the unknown motion EξP (by inspecting the graph
or using algebra).

Example: Choose the paths in red dashed lines:

OξM ⊕ MξB ⊕ BξE ⊕ EξP =O ξC ⊕ CξP (4)

which can be rewritten for calculation of the unknown (desired)
motion:

EξP = ⊖BξE ⊖ MξB ⊖ OξM ⊕ OξC ⊕ CξP (5)

Dimitris C. Dracopoulos 11/31

Pose in Two Dimensions (2D)

A point is represented using (x , y) coordinates or as a coordinate
vector from the origin of the frame to the point:

p = x x̂ + y ŷ (6)

Dimitris C. Dracopoulos 12/31

2D Rotation Matrix

(x̂B ŷB) = (x̂A ŷA)
(

cosθ −sinθ
sinθ cosθ

)
(7)

ARB(θ) =

(
cosθ −sinθ
sinθ cosθ

)
is called the rotation matrix which transforms frame {A} described
by (x̂A ŷA) into frame {B} described by (x̂B ŷB) (positive values
of θ are in the counter-clockwise direction).

Dimitris C. Dracopoulos 13/31

Transforming a Coordinate Vector

To transform a coordinate vector (Bpx ,
B py) with respect to frame

{B} to a vector in respect to frame {A} the following form should
be used: (

Apx
Apy

)
= ARB(θ)

(
Bpx
Bpy

)
(8)

Dimitris C. Dracopoulos 14/31

Properties of the Rotation Matrix

▶ The inverse matrix is the same as the Transpose! R−1 = RT

▶ easy to compute

▶ The determinant is 1: det(R) = 1
▶ the length of a vector is unchanged after the rotation (the

same applies for the relative orientation of vectors)

Dimitris C. Dracopoulos 15/31

Creating a rotation matrix in the Python Robotics Toolbox

>>> R = rot2(math.pi/2) # angle in radian by default

array([[0, -1],

[1, 0]])

>>> rot2(90, 'deg') # angle in degrees

array([[-1, 0],

[0, -1]])

Dimitris C. Dracopoulos 16/31

Visualising Rotation

The orientation represented by a rotation matrix can be visualised
as a coordinate frame:

R2 = rot2(-math.pi/2)

trplot2(R2)

Dimitris C. Dracopoulos 17/31

Operations for Matrix Rotations

The product of two rotation matrices is also a rotation matrix:

R2=rot2(-math.pi/2)

R=rot2(math.pi/2)

R@R2

▶ @ must be used for multiplication of NumPy arrays! Do not
use *

The toolbox also supports symbolic operations:

from sympy import *

theta = Symbol('theta')

R = Matrix(rot2(theta)) # convert to SymPy matrix

Dimitris C. Dracopoulos 18/31

Operations for Matrix Rotations (cont’d)

>>> R*R

Matrix([

[-sin(theta)**2 + cos(theta)**2, -2*sin(theta)*cos(theta)],

[2*sin(theta)*cos(theta), -sin(theta)**2 + cos(theta)**2]])

>>> simplify(R*R)

Matrix([

[cos(2*theta), -sin(2*theta)],

[sin(2*theta), cos(2*theta)]])

>>> R.det()

sin(theta)**2 + cos(theta)**2

>>> R.det().simplify()

1

Dimitris C. Dracopoulos 19/31

2D Homogeneous Transformation Matrix

To describe the relative pose of the frames below both a
translation of the origin of frames as well as a rotation is needed:

1. A vector Bp with respect to frame {B} is first transformed
with respect to frame {A′} which is a frame parallel to frame
{A}. Use rotation.

2. A translation is then needed to transform the vector from
frame {A′} to frame {A}.

Dimitris C. Dracopoulos 20/31

(
Ax

Ay

)
=

(
A′
x

A′
y

)
+

(
tx
ty

)
=

(
cosθ −sinθ
sinθ cosθ

)(
Bx
By

)
+

(
tx
ty

)

=

(
cosθ −sinθ tx
sinθ cosθ tx

) Bx
By
1


or equivalently: Ax

Ay

1

 =

(
ARB(θ)

AtB
01×2 1

) Bx
By
1

 (9)

▶ The homogeneous transformation can be considered as the
relative pose (robot motion) which first translates the
coordinate frame by tB with respect to frame {A} and then is
rotated by ARB(θ)

Dimitris C. Dracopoulos 21/31

Working with the Toolbox for Homogeneous
Transformations

>>> trot2(0.3) # translation of 0 and rotation by 0.3 radians.

which is equivalent to the composition of a translation of 0
followed by a rotation of 0.3 radians:

>>> transl2(0, 0) @ trot2(0.3)

An example of a translation of (1, 2) followed by a rotation of 30
degrees:

>>> TA = transl2(1,2) @ trot2(30, "deg")

A coordinate frame representing the above pose can be plotted:

plotvol2([0, 5]); # range of values in both axes is [0, 5]

trplot2(TA, frame="A", color="b");

add the reference frame to the plot

T0 = transl2(0, 0);

trplot2(T0, frame="0", color="k");

Dimitris C. Dracopoulos 22/31

Working with the Toolbox for Homogeneous
Transformations (cont’d)

Dimitris C. Dracopoulos 23/31

Pose in the 3D Space

Rotation:

▶ A new coordinate frame {B} with the same origin as {A} but
rotated with respect to {A}

▶ Transforms vectors from new frame {B} to the old frame {A}:

Dimitris C. Dracopoulos 24/31

Elementary Rotation Matrices in 3D

Rotation about the x-axis:

Rx(θ) =

 1 0 0
0 cosθ −sinθ
0 sinθ cosθ

 (10)

Rotation about the y -axis:

Ry (θ) =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

 (11)

Rotation about the z-axis:

Rz(θ) =

 cosθ −sinθ 0
sinθ cosθ 0
0 0 1

 (12)

Dimitris C. Dracopoulos 25/31

Properties of the 3D Rotation Matrix

Similarly with the 2D case:
▶ The inverse matrix is the same as the Transpose! R−1 = RT

▶ easy to compute

▶ The determinant is 1: det(R) = 1
▶ the length of a vector is unchanged after the rotation

▶ Rotations in 3D are not commutative (the order of rotation
matters!)

Dimitris C. Dracopoulos 26/31

Representation of Rotation in 3D as an Axis-Angle

Combining:

▶ a unit vector e indicating a single axis of rotation

▶ an angle θ describing the magnitude of the rotation about the
axis

Example:

(axis, angle) =

 ex
ey
ez

 , θ

 =

 0
0
1

 ,
π

2

 (13)

a rotation of 90◦ = π
2 about the z-axis.

Reminder: 2π = 360◦ ⇒ π = 180◦ ⇒ π
2 = 90◦

Dimitris C. Dracopoulos 27/31

Python Toolbox Example
Rx(

π
2) can be represented as:

>>> R = rotx(math.pi / 2)

The orientation represented by a rotation matrix can be visualized
as a coordinate frame rotated with respect to the reference
coordinate frame:
trplot(R)

Dimitris C. Dracopoulos 28/31

How to Represent Translation in 3D

Just a vector with 3 elements corresponding to how much we move
along the x , y and z axes.

V =

 vx
vy
vz

 (14)

Assuming P is the position of some object then we can apply
transformation TV by simply adding V to P:

TV (P) = P + V (15)

Dimitris C. Dracopoulos 29/31

Representing Pose in 3D

Different ways:

▶ Vector and 3 angles (roll, pitch, yaw)
▶ Homogeneous transformation (rotation and translation)

▶ advantage of transformations calculations using matrix
multiplications!

Dimitris C. Dracopoulos 30/31

Homogeneous Transformation in 3D

Construct a 4× 4 array with the rotation matrix with 3 zeros (0) in
the row below it, and the translation vector with an extra element
of 1, as a column next to the rotation matrix:
e.g. rotation about x-axis with translation elements of vx , xy , vz

Rx(θ) =


1 0 0 vx
0 cosθ −sinθ vy
0 sinθ cosθ vz
0 0 0 1

 (16)

−→ Remember, the matrix-based transformations allow to apply
them (or even to combine them!) using matrix multiplication!

Dimitris C. Dracopoulos 31/31

Homogeneous Transformation in 3D - Inverse
Transformation

Although the inverse of the homogeneous transformation can be
calculated as normally by computing the inverse of the original
matrix (transformation), this can be done much faster.

▶ The homogeneous transformation matrix can be written as:[
R d
0 1

]
where R is the rotation matrix part and d is the translation
vector part.

▶ then the inverse of the matrix (transformation) can be
calculated as: [

R ′ −R ′ ∗ d
0 1

]

