
Dimitris C. Dracopoulos 1/20

5COSC023W - MOBILE APPLICATION
DEVELOPMENT

Lecture 3: More on Activities and Intents:
Lifecyle and Configuration Changes

Dr Dimitris C. Dracopoulos



Dimitris C. Dracopoulos 2/20

The Activity Lifecycle

▶ Created (not visible yet)

▶ Started (visible)

▶ Resume (visible)

▶ Paused(partially invisible)

▶ Stopped (hidden)

▶ Destroyed (gone from memory)

State changes are triggered by user action, configuration changes
such as device rotation, or system action



Dimitris C. Dracopoulos 3/20

The Activity Lifecycle (cont’ed)



Dimitris C. Dracopoulos 4/20

When the Callbacks are Called?

▶ onCreate(Bundle savedInstanceState) — static
initialization
▶ onStart() — when Activity (screen) is becoming visible
▶ onRestart() — called if Activity was stopped (calls

onStart())
▶ onResume() — start to interact with user
▶ onPause() — about to resume PREVIOUS Activity

▶ onStop() — no longer visible, but still exists and all state info
preserved

▶ onDestroy() — final call before Android system destroys
Activity



Dimitris C. Dracopoulos 5/20

Implementing Callbacks

▶ Only onCreate() is required

▶ The other callbacks can be (optionally) overridden to change
default behaviour



Dimitris C. Dracopoulos 6/20

The onCreate(Bundle savedInstanceState) method

▶ Called when the Activity is first created

▶ Does all static setup: create views, bind data to lists, ...

▶ Only called once during an activity’s lifetime

▶ Accepts a Bundle argument with Activity’s previously saved
state (saved with onSaveInstanceState()), if there was one

▶ Created state is always followed by onStart()



Dimitris C. Dracopoulos 7/20

The onResume method

▶ Called when Activity will start interacting with user

▶ Activity has moved to top of the Activity stack

▶ The activity is both visible and interactive with the user

▶ This is Running state for the activity



Dimitris C. Dracopoulos 8/20

The onPause method

▶ Called when system is about to replace the current activity
with another

▶ The Activity is partly visible but non-interactive with the user

▶ Used to save data, stop animations and anything that
consumes resources

▶ Implementations must be fast (not too much data saved)
because the next Activity is not displayed until this method
returns

▶ Followed by either onResume() if the Activity returns back to
the front, or onStop() if it becomes invisible to the user



Dimitris C. Dracopoulos 9/20

The onStop() method

▶ The activity is no more visible to the user

▶ Use to save data which take too long to save in onPause

▶ It is followed by either onRestart() if Activity is coming
back to interact with user, or onDestroy() if Activity is
going away



Dimitris C. Dracopoulos 10/20

The onDestroy() method

▶ Final call before Activity is destroyed

▶ The user navigates to another activity or there is a
configuration change

▶ The activity is finishing or the system destroys it to save space
(you can distinguish between the 2 by calling isFinishing

▶ System may destroy Activity without calling this (by simply
killing the process) , therefore use onPause() or onStop() to
save data or state



Dimitris C. Dracopoulos 11/20

Configuration Changes

Configuration changes invalidate the current layout or other
resources in your activity when the user:

▶ Rotates the device

▶ Chooses different system language, so locale changes

▶ Enter multi-window mode

On configuration change the operating system:

1. Destroys the activity calling:

1.1 onPause()
1.2 onStop()
1.3 onDestroy()

2. Starts the activity again calling:

2.1 onCreate()
2.2 onStart()
2.3 onResume()



Dimitris C. Dracopoulos 12/20

Activity Instance State

▶ State information is created while the Activity is running, such
as a counter, user text, animation progression

▶ State is lost when device is rotated, language changes,
back-button is pressed, or the system clears memory



Dimitris C. Dracopoulos 13/20

What the Operating System Saves

The OS saves automatically:

▶ State of views with unique ID (android:id) such as text
entered into an EditText

▶ The Intent that started the activity and data in its extras

−→ The developer is responsible for saving other activity and user
progress data



Dimitris C. Dracopoulos 14/20

Saving instance state

Implement onSaveInstanceState() in the activity.

▶ Called by Android runtime when there is a possibility the
Activity may be destroyed

▶ Saves data only for this instance of the Activity during the
current session. If the application is restarted this cannot be
used

−→ onSaveInstanceState is not called when user explicitly
closes the activity (e.g. presses the Back button) or when finish()
is called. Use onPause() or onStop() instead



Dimitris C. Dracopoulos 15/20

Implementing onSaveInstanceState()

override fun onSaveInstanceState(outState: Bundle) {

super.onSaveInstanceState(outState)

outState.putInt("counter", counter)

}



Dimitris C. Dracopoulos 16/20

Restoring Instance State

Two ways to retrieve the saved Bundle data:

▶ In onCreate(Bundle mySavedState)

▶ Implement callback onRestoreInstanceState(Bundle

mySavedState) (this is called after onStart()



Dimitris C. Dracopoulos 17/20

Example of Restoring State in onCreate()

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

setContentView(R.layout.activity_main)

var tv = findViewById<TextView>(R.id.textView)

if (savedInstanceState != null) {

counter = savedInstanceState.getInt("counter", 0)

tv.setText("" + counter)

}

}



Dimitris C. Dracopoulos 18/20

What happens when an Application Restarts?

▶ When the user stops and restarts a new app session, the
Activity instance states are lost and the activities will revert to
their default appearance

▶ If you need to save user data between app sessions, use

1. Shared preferences
2. or a Database



Dimitris C. Dracopoulos 19/20

Sending Data from one Activity to Another

In the Sending Activity:

1. Create the Intent.

2. Set data or put extra data in the Intent.

3. Start the receiving (new activity) with
startActivity(intent).

In the Receiving Activity:

1. Get the Intent that created the Activity.

2. Retrieve the data or extras from the Intent.



Dimitris C. Dracopoulos 20/20

Examples

// Setting data and extras

intent.setData(Uri.parse("http://www.google.co.uk"));

intent.setData(Uri.parse("tel:02079115000"));

intent.putExtra("Score", 56345);

// Retrieving data and extras

Uri url = intent.getData();

int score = intent.getIntExtra("score", 0);


