
Dimitris C. Dracopoulos 1/30

5COSC019W - OBJECT ORIENTED
PROGRAMMING

Lecture 7: Exceptions

Dr Dimitris C. Dracopoulos

Dimitris C. Dracopoulos 2/30

Exceptions

Exceptions offer a way to change the program flow control when
an error or unexpected event happens.

I Exceptions notify the user of an error.

I Exceptions cannot be overlooked.

I Exceptions localise the error handling in only a few areas of
the code. Exceptions are sent to an exception handler, not
necessarily the calling method.

I Exceptions can facilitate error recovery when this is possible.

I Throw an exception object to indicate failure:

if (failure)

{

XxxException e = new XxxException(. . .);

throw e;

}

Dimitris C. Dracopoulos 3/30

An Example of Throwing an Exception

public class BankAccount

{

public void withdraw(double amount)

{

if (amount > balance)

throw new IllegalArgumentException(

"Amount exceeds balance");

balance = balance - amount;

}

...

}

Dimitris C. Dracopoulos 4/30

What happens when an exception is thrown

The following happen when an exception is thrown:

1. An exception object is created to record the details that went
wrong.

2. The runtime system changes the normal flow of control, to
search back up the call chain for a place where code which
handles the specific type of exception exists.

Dimitris C. Dracopoulos 5/30

Example:
class BankAccount {

private double balance;

public void deposit(double amount) {

balance += amount;

}

public void withdraw(double amount) {

if (amount > balance)

throw new IllegalArgumentException(

"Amount exceeds balance");

balance = balance - amount;

}

}

public class BankAccountExceptionTest {

public static void main(String[] args) {

BankAccount b1 = new BankAccount();

b1.deposit(100.0); // first deposit

b1.withdraw(200.0);

System.out.println("Depositing 300.0");

b1.deposit(300.0); // second deposit

}

}

Dimitris C. Dracopoulos 6/30

When the code is run, it displays:

Exception in thread "main" java.lang.IllegalArgumentException:

Amount exceeds balance

at BankAccount.withdraw(BankAccountExceptionTest.java:10)

at BankAccountExceptionTest2.main(BankAccountExceptionTest.java:21)

Dimitris C. Dracopoulos 7/30

Example — Catching the Exception:

class BankAccount {

private double balance;

public double getBalance() {

return balance;

}

public void deposit(double amount) {

balance += amount;

}

public void withdraw(double amount) {

if (amount > balance)

throw new IllegalArgumentException(

"Amount exceeds balance");

balance = balance - amount;

}

}

Dimitris C. Dracopoulos 8/30

Example — Catching the Exception:
public class BankAccountExceptionTest2 {

public static void main(String[] args) {

BankAccount b1 = new BankAccount();

b1.deposit(100.0); // first deposit

// handle the exception if thrown

try {

b1.withdraw(200.0);

}

catch (IllegalArgumentException ex) {

System.out.println("*** Withdraw failed! ***");

System.out.println(ex.getMessage());

}

System.out.println("New balance: " + b1.getBalance());

System.out.println("Depositing 300.0");

b1.deposit(300.0); // second deposit

System.out.println("New balance: " + b1.getBalance());

}

}

Dimitris C. Dracopoulos 9/30

Classification of Exceptions

Throwable

Error Exception

IOException
ClassNotFound

Exception

Clone Not

Supported Exception

EOFException

FileNotFound

Exception

Arithmetic

Exception

ClassCastException

RuntimeException

Dimitris C. Dracopoulos 10/30

Classification of Exceptions (cont’ed)

An exception object is always an instance of a class derived from
Throwable.
All exceptions happen at run time (therefore the name
RuntimeException was not properly chosen).

I A RuntimeException happens because you made a
programming error. Any other exception occurs because a bad
thing, such as I/O error, happened to your otherwise good
program.
Such problems occur because:
I A bad cast
I An out-of-bounds array access.
I A null pointer access.

Dimitris C. Dracopoulos 11/30

Classification of Exceptions (cont’ed)

I Exceptions which do not inherit from RuntimeException
include:
I Trying to read past the end of a file.
I Trying to open a malformed URL.

I The Error hierarchy describes internal errors and resource
exhaustion inside the Java run time (e.g. heap space
exhaustion). These exceptions are rare and they should not be
caught.

Dimitris C. Dracopoulos 12/30

Checked vs Unchecked Exceptions

The Java Language Specification calls any exception that derives
from the class Error or RuntimeException an unchecked
exception.

I A method must declare or catch all the checked exceptions it
throws.

I Otherwise the compiler will give an error message.
Example: When an I/O operation does not catch or declare as
thrown the IOException, the compiler issues:

javac myProgram.java

unreported exception java.io.IOException;

must be caught or declared to be thrown

Dimitris C. Dracopoulos 13/30

How to Catch an Exception (Checked or Unchecked)

String filename = "myfile";

FileReader reader = null;

try {

reader = new FileReader(filename);

Scanner sc = new Scanner(reader);

}

catch(FileNotFoundException ex) {

System.out.println("File not found: " +

ex.getMessage());

ex.printStackTrace();

}

A class for an Exception catches all the exceptions of this type and
the exceptions which have derived from this exception.

Dimitris C. Dracopoulos 14/30

The Flow of Control using Exceptions
Here is what happens when an exception is specified (i.e. when a
try block is used inside a code):

1. Statements in try block are executed.

2. If no exceptions occur, catch clauses are skipped.

3a If exception of matching type occurs, execution jumps to catch
clause.

3b If exception of another type occurs, it is thrown to the calling
method.
The exception can propagate up to main method, if none of
the other calling methods handle it. If main doesn’t catch an
exception, the program terminates with a stack trace.

Dimitris C. Dracopoulos 15/30

The General Syntax of a Try Block

try

{

statement

statement

...

}

catch (ExceptionClass exceptionObject)

{

statement

statement

...

}

catch (ExceptionClass exceptionObject)

{

statement

statement

...

}

...

Dimitris C. Dracopoulos 16/30

Example:

BufferedReader console = null;

try {

console = new BufferedReader(new InputStreamReader(System.in));

System.out.println("What is your name?");

String name = console.readLine();

System.out.println("Hello,"+name +"!");

}

catch (IOException exception) {

exception.printStackTrace();

System.exit(1);

}

catch (Exception ex) {

ex.printStackTrace();

...

}

Dimitris C. Dracopoulos 17/30

The Finally Clause

Assume that an exception terminates the current method.
Then:

I Danger: Can skip over essential code

Example:

BufferedReader in;

in = new BufferedReader(new FileReader(filename));

in.read();

in.close();

I Must execute in.close() even if exception happens.

I Use finally clause for code that must be executed ”no matter
what”.

Dimitris C. Dracopoulos 18/30

How the Finally clause works

The finally clause is:

I Executed even the try block comes to normal end.

I Executed if a statement in try block throws an exception,
before exception is thrown out of try block.

I Can also be combined with catch clauses.

try {

statement

statement

...

}

catch (ExceptionClass exceptionObject) {

statement ...

}

finally {

statement

...

}

Dimitris C. Dracopoulos 19/30

Example:
public class ConsoleReadExample {

public static void main(String[] args) {

BufferedReader console = null;

try {

console = new BufferedReader(

new InputStreamReader(System.in));

System.out.println("What is your name?");

String name = console.readLine();

System.out.println("Hello,"+name +"!");

}

catch (IOException exception) {

exception.printStackTrace();

}

catch (Exception ex) {

ex.printStackTrace();

}

finally {

try {

if (console != null)

console.close();

}

catch(IOException ex) {

System.out.println("close() failed");

}

}

}

}

Dimitris C. Dracopoulos 20/30

Catching More than 1 Exception with 1 Catch Clause

Java 7 and newer:

I Use the vertical bar (|)

catch (IOException|SAXException ex) {

// .. do something, e.g.

logger.log(ex);

}

Dimitris C. Dracopoulos 21/30

The try-with-resources Statement

Java 7 and newer:
A try associated with one or more resources.

I A resource is an object that must be closed after the program
is finished with it.

I Any object that implements the java.lang.AutoCloseable

or java.io.Closeable interfaces.

The resource will be closed whether the try method completes
normally or interrupted because of an exception being thrown.

Dimitris C. Dracopoulos 22/30

The try-with-resources Statement

String readLineFromFile(String path) throws IOException {

try (BufferedReader br =

new BufferedReader(new FileReader(path))) {

return br.readLine();

}

}

I A try-with-resources can be associated with catch and
finally blocks.

I Any catch and/or finally blocks will be executed after the
declared resource(s) are closed.

I You can specify more than one “closeable” resources if you
separate them with a semicolon, the statement separator (;)

Dimitris C. Dracopoulos 23/30

Designing your own Exceptions

The developer can create their own exceptions by extending the
appropriate type of Exception.
Example:

if (amount > balance)

throw new InsufficientFundsException(. . .);

I Make it an unchecked exception–programmer could have
avoided it by checking the balance first

I Extend RuntimeException

I Supply two constructors (one takes an argument, explanation
of why the exception occurred).

Dimitris C. Dracopoulos 24/30

Example:

public class InsufficientFundsException extends RuntimeException {

public InsufficientFundsException() {

}

public InsufficientFundsException(String reason) {

// call the corresponding constructor

// of the parent Exception

super(reason);

}

}

Dimitris C. Dracopoulos 25/30

Designing your own Exceptions (cont’ed)

I If the client code can reasonably be expected to recover from
an exception, make it a checked exception.

I If the client code cannot do anything to recover make it an
unchecked exception.

Dimitris C. Dracopoulos 26/30

Exception Specification
If a method does not catch a checked exception (whether a
checked user-defined exception or a checked exception available by
the language) then it should declare it as thrown (if not the
compiler will spot this error and force you to change your code):

public void read(BufferedReader in) throws IOException

{

value = Double.parseDouble(in.readLine());

name =in.readLine();

}

...

}

I If a method declares an Exception as thrown then it is the
responsibility of the caller of that method to catch the
exception.

I If the caller declares this as also thrown, the exception
propagates up to the main() method.

I If this does not catch the exception, then the JVM will report
you when the exception occurs and prints the StackTrace.

Dimitris C. Dracopoulos 27/30

Exception Specification (cont’ed)

Specifying an exception does not result in an overhead in your
program! Only when the exception actually occurs you will have an
overhead cost..

Dimitris C. Dracopoulos 28/30

import java.io.*;

public class ExceptionDeclarationExample {

double value;

String name;

public void read(BufferedReader in) throws IOException {

System.out.print("Enter a value: ");

value = Double.parseDouble(in.readLine());

System.out.print("Enter a name: ");

name = in.readLine();

}

public void print() {

System.out.println("value=" + value);

System.out.println("name=" + name);

}

Dimitris C. Dracopoulos 29/30

public static void main(String[] args) {

ExceptionDeclarationExample e =

new ExceptionDeclarationExample();

BufferedReader br = new BufferedReader(

new InputStreamReader(System.in));

try {

e.read(br);

}

catch (IOException ioex) {

System.out.println("read() method failed");

ioex.printStackTrace();

}

e.print();

}

}

Dimitris C. Dracopoulos 30/30

Advantages in using Exceptions

1. Localisation of error handling in the code

1.1 Separating Error-Handling Code from ”Normal” Code
1.2 Propagating Errors Up the Call Stack: a method can

propagate an error to a caller method if it cannot/don’t want
to deal with it itself.

2. Grouping and Differentiating Error Types

