
University of Westminster
School of Computer Science & Engineering

5COSC019W Coursework (Semester 1)

Module leader Dr D. Dracopoulos

Unit Coursework

Weighting: 50%

Qualifying mark 30%

Description Coursework

- LO1 Identify and justify good practices in object-oriented software

development. Communicate the aspects of object-oriented programming which

are advantageous when compared to non-object-oriented paradigms;

- LO2 Acquire detailed knowledge of concepts of object-oriented programming

and apply characteristics, tools and environments to adapt to new computational

environments and programming languages which are based on object-oriented

principles;

- LO3 Design and implement applications based on an object-oriented

programming language, given a set of functional requirements. Use APIs which

have not been exposed to previously, in order to develop an application requiring

specialised functionality;

- LO4 Design and Implement graphical interfaces using an object-oriented

programming language;

-LO5 Apply appropriate techniques for evaluation and testing and adapt the

performance accordingly.

14/12/2021 13:00

Handed Out: 26/10/2021

Learning Outcomes Covered
in this Assignment:

Due Date

Expected deliverables Java Source code and any Resources (images, etc)

Electronic submission on BB via a provided link close to the submission time.
Method of Submission: The file you upload should have the following naming format:

wNNNNNNNN.zip (where wNNNNNNN is your university ID login

name)

Type of Feedback and Due Individual feedback via Blackboard within 2 weeks of submission
Date:

All marks will remain provisional until formally agreed by an Assessment
Board.

Assessment regulations

Refer to section 4 of the “How you study” guide for undergraduate students for a clarification of how you are assessed,
penalties and late submissions, what constitutes plagiarism etc.

Penalty for Late Submission

If you submit your coursework late but within 24 hours or one working day of the specified deadline, 10 marks will be
deducted from the final mark, as a penalty for late submission, except for work which obtains a mark in the range 40 –
49%, in which case the mark will be capped at the pass mark (40%). If you submit your coursework more than 24 hours or
more than one working day after the specified deadline you will be given a mark of zero for the work in question unless a
claim of Mitigating Circumstances has been submitted and accepted as valid.

It is recognised that on occasion, illness or a personal crisis can mean that you fail to submit a piece of work on time. In
such cases you must inform the Campus Office in writing on a mitigating circumstances form, giving the reason for your
late or non-submission. You must provide relevant documentary evidence with the form. This information will be reported
to the relevant Assessment Board that will decide whether the mark of zero shall stand. For more detailed information
regarding University Assessment Regulations, please refer to the following website
:http://www.westminster.ac.uk/study/current-students/resources/academic-regulations

It is recognised that on occasion, illness or a personal crisis can mean that you fail to submit a piece of work on
time. In such cases you must inform the Campus Office in writing on a mitigating circumstances form, giving
the reason for your late or non-submission. You must provide relevant documentary evidence with the form.
This information will be reported to the relevant Assessment Board that will decide whether the mark of zero
shall stand. For more detailed information regarding University Assessment Regulations, please refer to the
following website:http://www.westminster.ac.uk/study/current-students/resources/academic-regulations

http://www.westminster.ac.uk/study/current-students/resources/academic-regulations
http://www.westminster.ac.uk/study/current-students/resources/academic-regulations

5COSC019W OBJECT ORIENTED
PROGRAMMING - Assignment
Deadline 14/12/2021, 13:00

Dr Dimitris C. Dracopoulos
Email: d.dracopoulos@westminster.ac.uk

Description

Your task is to create a Java program which simulates the manipulation of a Formula 1 racing
car championship.

For the GUI part you are NOT allowed to use drag and drop tools (such as
those found in Netbeans, etc.) to create the graphical user interface for any part of
this coursework! All graphical code should be manually written in Java Swing and
no tool which generates code automatically should be used. Any submission which
uses for any part of this assignment drag and drop tools will not receive any marks
for these parts.

Implement a class Formula1ChampionshipManager which extends interface Championship-
Manager. The Formula1ChampionshipManager class maintains a number of drivers and cars
(constructors, i.e. manufacturer of the car) which compete in the Formula 1 car championship.
Each driver belongs to exactly one constructor team (e.g. Ferrari) and each constructor team
has a single driver (e.g. Mercedes has a single driver called Hamilton)

The details for the implementation of the system are given in the steps below: It is impor-
tant to follow exactly the specifcations and your implementation must conform to
these:

1. Design and implement classes Driver (abstract class), Formula1Driver. The classes
should include appropriate methods and hold information about the name of the driver,
their location, the team they belong to and various statistics about the drivers.
Formula1Driver should include statistics such as how many frst position, second positions
and third positions an instance of it has achieved in the season. The number of points that
a driver currently has, and the number of races participated so far in the season should
also be included.

The points awarded for each driver in a race (and for the all the calculations in this
assignment) are according to the following scheme:

1:25 2:18 3:15 4:12 5:10 6:8 7:6 8:4 9:2 10:1

i.e. the driver who got the frst position in the race wins 25 points, the second 18, the
third 15 and so on. A driver must fnish the race to be awarded points and also fnish it
in the frst 10 positions. (5 marks).

1

mailto:d.dracopoulos@westminster.ac.uk

2. Implement a class Formula1ChampionshipManager which extends interface Champion-
shipManager. The Formula1ChampionshipManager class maintains a number of drivers
who play in the Formula 1 championship. (5 marks).

The class should create a menu based on text input (i.e. console and NOT graphical
components) and give the user the choice of:

• Create a new driver (who is added in the championship). The driver should be
associated with a unique team (car manufacturer) (4 marks).

• Delete a driver and the team that the driver belongs to from the Formula 1 champi-
onship. (2 marks).

• Change the driver for an existing constructor team (e.g. change the driver for the
Ferrari team). 2 marks

• Display the various statistics for a selected existing driver. (4 marks).

• Display the Formula 1 Driver Table, i.e. display all the drivers competing in the
Formula 1 championship, the team they belong to and some of their statistics, in
descending order, according to the points they have in the current season. Thus, the
driver who has the maximum number of points should be displayed frst, the driver
being second in the championship should be displayed next, etc. In the case that
two drivers have the same number of points the driver who has won the most frst
positions in races should appear frst. (8 marks).

• Add a race completed with its date and the positions that all the drivers achieved.
The statistics of all the drivers who participated and the Formula 1 championship
table are updated automatically. (7 marks).

• Saving in a fle of all the information entered by the user so far. (8 marks).

• The next time the application starts it should read all the information saved in the
previous fle (resume/recover the previous state of the program) and continue its
operation based on that with the user being able to enter new information or change
the existing information. (9 marks).

3. Start a graphical user interface (GUI) based on Java Swing from the text menu (i.e.
console) which is able to do the following:

• Display the list (table) of all the drivers and their statistics in descending order of
points. (4 marks).

• Give the user the possibility of sorting the previous table according to points won by
drivers (ascending order). (4 marks).

• Give the user the possibility of sorting the previous table according to the largest
number of frst position won in races (descending order). (4 marks).

• Add a button which every time it is pressed it generates one random race with random
positions achieved by the existing drivers. This automatically updates the Formula 1
championship table by adding the race (points, positions and other statistics). The
positions should be entirely random and not hardcoded in your source code. The
button should generate a diferent race with diferent driver positions every time it is
clicked. The user should be able to see the randomly generated race with the driver
positions (in addition to the table of standings), in order to be able to verify the
correctness of your code for the updated information of the table. (8 marks).

2

• Add a button which is similar in functionality with the previous questions (i.e. it
generates the results of a full race and adds them in the statistics) with the following
modifcation. The drivers are starting the race in a randomly calculated position
(e.g. Vettel in starting position 1, Hamilton in starting position 2 and so on). These
starting positions should be random and not hardcoded. The results of the race
are probabilistic and according to the starting position, more specifcally: the driver
starting in position 1, has 40% probability to win the race, the driver starting in
position 2 has 30% probability to win the race, the drivers starting in positions 3 and
4 have a 10% each to win the race. All of the drivers in positions 5 to 9 each have
a probability of 2% to win the race and all other drivers have a 0% chance to win
the race. The rest of the positions (2–10) are determined completely randomly marks
(8).

• Add a button which displays all the completed races sorted in ascending order of date
played (both randomly generated or manually entered using the text menu function-
ality described above). This should display all the races that took place in the season,
included races inserted and generated in previous runs of the application (assuming
that the user saved the information entered using the text menu functionality above).
(7 marks).

• Add a button and a textbox which can be used to search for all races that a given
driver participated. The full details of the races should be displayed (i.e. both the
dates and the positions of the driver in the matching races). (5 marks).

Marking Scheme: The marks achieved for each part of the program are indicated in the
description of the task above. In addition to these the following will be taken into account:

• Code readability (structure, comments, variable naming, etc.): 3%

• Implementation (e.g. quality, efciency, etc.): 3%

The maximum for work which does not compile is 30% (i.e. a mark in the range 1–30% will
be awarded).

Submission of assignments using a diferent method other than Blackboard will
not be accepted and zero (0) marks will be awarded in such cases.

Deadline: Tuesday 14th of December 2021, 13:00.

Submission Instructions

Files to submit: all your source code fles (the fles with extension .java fles NOT the .class
fles). This should include test classes, i.e. classes which were implemented for the sole purpose
of testing other classes. You should NOT copy and paste your code into notepad, Word
or other applications but simply submit in a zip fle all your Java source, i.e. the
fles with extension .java.

Alternatively you can use Netbeans to create a zip fle of your whole project (go to the menu
File->Export Project->to Zip)

Referencing code: Any code taken from other resources (i.e. a textbook or internet) should
be referenced in comments within your code (full textbook details or full web URL), identifying

3

the exact code that you used it as part of your application and the exact portions of the original
source code that you reused.

You should submit via BlackBoard’s Assignment functionality (do NOT use email, as email
submissions will be ignored.), all the fles described above. A single zip fle with the name
wNNNNNNNN (where wNNNNNNN is your university ID login name) containing all the above fles
could be submitted alternatively. You can create such a fle by using the main menu in Netbeans
and choose File->Export Project->to Zip or use other tools in your operating system.

Note that Blackboard will allow to make a submission multiple times. Make
sure before submitting (i.e. before pressing the Submit button), that all the fles
you want to submit are contained there (or in the zip fle you submit).

In the case of more than one submissions, only your last submission before the
deadline given to you will be marked, so make sure that all the fles are included in
the last submission attempt and the last attempt is before the coursework deadline.

Request to mark submissions which are earlier than the last submission before
the given deadline will be ignored as it is your responsibility to make sure everything
is included in your last submission.

The following describes how to submit your work via BlackBoard:

1. Access https://learning.westminster.ac.uk and login using your username and pass-
word (if either of those is not known to you, contact the Service Desk, tel: +44 (0) 207
915 5488 or log a call via https://servicedesk.westminster.ac.uk.).

2. Click on the module’s name, MODULE: 5COSC019W.2021 OBJECT ORIENTED PROGRAMMING
found under My Modules & Courses.

3. Click on the Assessment->Submit Coursework->Coursework.

4. Click on View Assignment.

5. Attach your zip fle containing all the Java source code fles, by using the Browse button.

6. Create a Word or PDF fle with the following information:

• Comments: Type your full name and your registration number, followed by:

”I confrm that I understand what plagiarism is and have read and understood the
section on Assessment Ofences in the Essential Information for Students. The work
that I have submitted is entirely my own. Any work from other authors is duly
referenced and acknowledged.”

7. Attach the fle with the statement above.

8. Check that you have attached both the zip and the statement fle.

9. Click the Submit button.

If Blackboard is unavailable before the deadline you must email the Registry at
fitzregistry@westminster.ac.uk with cc: to myself and your personal tutor before the dead-
line with a copy of the assignment, following the naming, title and comments conventions as
given above and stating the time that you tried to access Blackboard. You are still expected

4

mailto:fitzregistry@westminster.ac.uk
https://servicedesk.westminster.ac.uk
https://learning.westminster.ac.uk

to submit your assignment via Blackboard. Please keep checking Blackboard’s availability at
regular intervals up to and after the deadline for submission. You must submit your coursework
through Blackboard as soon as you can after Blackboard becomes available again even if you
have also emailed the coursework to the above recipients.

5

