5COSCO019W - Tutorial 2 Exercises

1 Objects, Classes and Methods

The String class provides methods that you can apply to String objects. One of them is the
length method. The length method counts the number of characters in a string. For example,
the sequence of statements

String greeting = "Hello, World!";
int n = greeting.length();

sets n to the number of characters in the string object "Hello, World!" (13).

Let us look at another method of the String class. When you apply the toUpperCase method
to a String object, the method creates another String object that contains the characters of the
original string, with lowercase letters converted to uppercase. For example, the sequence of
statements

String river = "Mississippi";
String bigRiver = river.toUpperCase();

sets bigRiver to the String object "MISSISSIPPI". Similarly, the toLowerCase method to
a String object creates another String object that contains the characters of the original string,
with uppercase letters converted to lowercase.

Write a program with the above code followed a line which constructs a new String object
from bigRiver, but with every character converted to lowercase. Then, print the new string.

Do you obtain the original string "Mississippi" back?

2 Familiarisation with the Java API (libraries)

1. The API (Application Programming Interface) documentation lists the classes and meth-
ods of the Java library.

Go to:
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
and find out what the method concat of the class String does. Describe it in your own

words.

2. Complete the following program so that it computes a string with the contents ”the quick
brown fox jumps over the lazy dog” (using the concat method), and then prints that
string and its length.


https://docs.oracle.com/en/java/javase/17/docs/api/index.html

public class ConcatTester

{
public static void main(String[] args)
{
String animall = "quick brown fox";
String animal2 = "lazy dog";
String article = "the";
String action = "jumps over";
/* Your work goes here */
b
}

3. Do the same as in 2 above, but instead of using the concat method, use the + operator.

3 Object References

1. The following program creates a new Rectangle and prints its info:

import java.awt.Rectangle;

public class RectangleTester

{
public static void main(String[] args)
{
Rectangle rl1 = new Rectangle(O, 0, 100, 50);
/* Your code goes here */
System.out.println(rl);
/* and here */
}
}

Add code to the program above to create a second rectangle with the same values (x, v,
width and height) as the first Rectangle. Then, apply the grow method to the second
rectangle (grow(10, 20)) and print both rectangles. For more info on the grow method,
look at the API documentation.

You can use the following Rectangle constructor to create the second rectangle:
public Rectangle(Rectangle r)

The above constructor constructs a new Rectangle, initialized to match the values of the
specified Rectangle.

Compile and run your modified program. What is its output?
2. Modify your program and change the line where you create the second rectangle to:

Rectangle r2 = ri;



Compile and run your program. What is the output? Why?
3. Consider the following program:

public class NumberVariablesTester

{
public static void main(String[] args)
{
double nl1 = 150;
double n2 = ni;
n2 = n2 * 20; // grow n2
System.out.println(nl);
System.out.println(n2);
}
}

Notice that this program is very similar to the program you created for the previous
excercise, but it uses number variables instead of object references.

Compile and run the program. What is the output? Why? (In your answer, contrast the
output of this program to that of the program you used in the previous exercise).

4 Designing and Implementing a Class

1. In this exercise, you will implement a vending machine. The vending machine holds cans
of soda. To buy a can of soda, the customer needs to insert a token into the machine.
When the token is inserted, a can drops from the can reservoir into the product delivery
slot. The vending machine can be filled with more cans. The goal is to determine how
many cans and tokens are in the machine at any given time.

What methods would you supply for a VendingMachine class? Describe them informally.
2. Now translate those informal descriptions into Java method signatures, such as
public void fillUp(int cans)

Give the names, parameters, and return types of the methods. Do not implement them
yet.

3. What instance variables would you supply? Hint: You need to track the number of cans
and tokens.

4. Consider what happens when a user inserts a token into the vending machine. The number
of tokens is increased, and the number of cans is decreased. Implement a method:

public void insertToken()

{

// instructions for updating the token and can counts



You need to use the instance fields that you defined in the previous problem.

Do not worry about the case where there are no more cans in the vending machine. You
will learn how to program a decision ”if can count is > 0” later in this course. For now,
assume that the insertToken method will not be called if the vending machine is empty.
What is the code of your method?

5. Now supply a method £i11Up(int cans) to add more cans to the machine. Simply add
the number of new cans to the can count. What is the code of your method?

6. Next, supply two methods getCanCount and getTokenCount that return the current values
of the can and token counts. (You may want to look at the getBalance method of the
BankAccount class for guidance.) What is the code of your methods?

7. Put the implementation of the various methods above and the fields together into a class,

like this:
class VendingMachine
{
public your first method
public your second method
private your first instance field
private your second instance field
b

What is the code for your complete class?

5 Testing a Class

Now test the implementation of your VendingMachine class in the previous exercise with the
following test program.

public class VendingMachineTester

{
public static void main(Stringl[] args)
{
VendingMachine machine = new VendingMachine();
machine.fil1Up(10); // fill up with ten cans
machine.insertToken();
machine.insertToken() ;
System.out.print ("Token count = ");
System.out.println(machine.getTokenCount());
System.out.print("Can count = ");
System.out.println(machine.getCanCount());
}
}

What is the output of the test program?



6 Challenge: The Birthday Problem

Suppose that people enter an empty room until a pair of people share a birthday. On average,
how many people will have to enter before there is a match? Write a program which calculates

this. Assume that an year has 365 days.

Hint: Run experiments to estimate an approximate value of this.



	Objects, Classes and Methods
	Familiarisation with the Java API (libraries)
	Object References
	Designing and Implementing a Class
	Testing a Class
	Challenge: The Birthday Problem

