
5COSC019W - OBJECT ORIENTED

PROGRAMMING

Lecture 5: Introduction to Collections (ArrayLists)

and Arrays

Dr Dimitris C. Dracopoulos

email: d.dracopoulos@westminster.ac.uk

1 Collections

The Collections is a set of classes found in the java.util package.

Compared with arrays, collection classes:

• Can hold a number of objects as elements (arrays can store both primitives and objects).

• They can have an unlimited number of objects. The size of a collection increases dynam-
ically as more objects are added into it.

• Although primitives cannot be stored directly, wrapper classes can be used to store the
value of a primitive in a wrapper object. Such an object is then stored in a collection class.

2 The ArrayList class

An example of a class belonging to Java Collections. An unlimited number of objects can be
stored in an ArrayList.

Example:

import java.util.*;

public class ArrayListExample {

public static void main(String[] args) {

ArrayList<String> al = new ArrayList<String>();

// Add three elements in the list

al.add("aa");

1

al.add("bb");

al.add("ccc");

for (int i=0; i < al.size(); i++) {

String s = al.get(i);

System.out.println(s);

}

// remove second element from the list

al.remove(1);

System.out.println("After remove(), al contains:");

for (String e : al)

System.out.println(e);

}

}

When the above program is run, it displays:

aa

bb

ccc

After remove(), al contains:

aa

ccc

Note that ArrayLists which can only store a specific type, such as in the above example (al
holds string objects), are called generics or parameterised types. This is because prior to Java
1.5, only non-parameterised collections classes were allowed. Non-parameterised collections can
store objects of any type (even a mixture of objects belonging to different classes).

3 Wrappers and Storing Numbers in Collections

Primitives cannot be stored directly in a collection class. The Java library contains wrapper
classes which correspond to primitives, as their objects are capable to store a primitive value.

The wrapper classes are:

• Byte

• Short

• Integer

• Long

• Float

• Double

Dimitris C. Dracopoulos 2

• Boolean

• Character

The code below creates an object of Double class, which holds a double value.

Double d1 = new Double(3.1);

Double d2 = 3.1; // automatically creates a Double object from 3.1

The two above statements are equivalent. The second form can only be used in Java version
1.5 or later. The automatic conversion of a primitive to the corresponding wrapper class (e.g.
double to a Double) is called autoboxing, while the opposite conversion is called unboxing (e.g.
automatically converting a Double to a double).

Example:

import java.util.*;

public class WrapperExample {

public static void main(String[] args) {

// create an ArrayList object storing Double objects

ArrayList<Double> a = new ArrayList<Double>();

Double d1 = new Double(5.4);

a.add(d1);

a.add(11.2); // autoboxing occurs (double -> Double conversion)

//a.add(new Integer(2)); // Error!

// get the second element from arraylist

Double d2 = a.get(1);

// get the 1st element - unboxing occurs (Double -> double conversion)

double d3 = a.get(0);

System.out.println("d2=" + d2 + ", d3=" + d3);

}

}

When the above example is run, it displays:

d2=11.2, d3=5.4

4 Non-parameterised ArrayLists

Although non-recommended, an ArrayList object can be declared to store objects of any type.
In such cases, explicit casting is required when obtaining an element from the list.

This is illustrated in the example below:

Dimitris C. Dracopoulos 3

import java.util.*;

public class ArrayListExample2 {

public static void main(String[] args) {

ArrayList l1 = new ArrayList();

l1.add(new Integer(11));

l1.add(new Integer(3));

l1.add(new Integer(55));

for (int i=0; i < l1.size(); i++) {

Integer k1 = (Integer) l1.get(i); // Cast is required!

System.out.println(k1);

}

}

}

Getting an element from list in l1 requires a cast. If the cast is omitted, the compiler will
report an error.

5 Arrays

A constant number of primitive types or objects can be stored in an array. This is done for
convenience, for example instead of declaring ten int variables, an array to store ten ints can be
declared. Using the array, the ten different integers will be manipulated using the same symbol
(array name) and a different index.

• Java arrays are objects (they are allocated in the heap).

5.1 Declaring an array

int a[];

After the above declaration, a is a variable which can hold a reference to an array of any size
containing int.

Note that arrays can store not only primitives, but objects as well. For example, assume
that class Book is defined, then the following is valid:

Book library[] = new Book[500];

5.2 Creating an array

a = new int[5];

The size of an array cannot be changed once it is created. After the creation of array a, the
situation is as shown in Figure 1.

Dimitris C. Dracopoulos 4

Memory

a

a[0]

a[4]

a[3]

a[2]

a[1]

int a[] = new int[5];

Figure 1: The creation of an array in the heap, with the statement int a[] = new int[5];.

Example:

/**

A class to simulate the operation of a lottery

*/

public class Lottery {

int results[];

/**

Constructs a lottery object with empty results

*/

public Lottery() {

results = new int[6];

}

/**

Simulates the lottery draw by filling in array results.

The random generator should be called normally, but

this class demonstrates arrays so for simplicity numbers

are fixed.

*/

public void draw() {

results[0] = 11;

results[1] = 45;

results[2] = 3;

results[3] = 24;

results[4] = 12;

results[5] = 31;

}

Dimitris C. Dracopoulos 5

/**

Prints on the screen the latest draw results

*/

public void printResults() {

System.out.println("The latest lottery results are:");

for (int i=0; i < results.length; i++)

System.out.print(results[i] + " ");

System.out.println();

}

public static void main(String[] args) {

Lottery lot = new Lottery();

lot.draw();

lot.printResults();

}

}

Note that in order to get the size of an array, its length field can be accessed. Thus,
results.length returns 6 which is the size of array results.

When the above program is run, it displays:

The latest lottery results are:

11 45 3 24 12 31

5.3 Initialising Arrays

There are two ways to initialise an array:

• Assign a value to each element individually.

double b[] = new double[10];

b[0] = 5.0;

b[1] = 1.2;

• Use an “array initialiser” at the point of declaration:

String weekdays[] = {"Mon", "Tue", "Wed", "Thu", "Fri"};

or

String weekdays[] = new String[] {new String("Mon"),

new String("Tue"),

new String("Wed"),

new String("Thu"),

new String("Fri")};

The latter form of “array initialiser” can be used to initialise an array not only where the
array is declared, but also in a statement.

Dimitris C. Dracopoulos 6

6 Two Dimensional Arrays (Arrays of Arrays)

A 2-dimensional array in Java is an array of an array.

Book mybooks [] []; // declaration of an array of array

mybooks = new Book[10][12]; // an array[10] of array[12]

The above declares an array mybooks with 10 elements, each element containing an array
with 12 Book elements. Then an array 10 of array 12 is created and assigned to myBooks. Thus,
mybooks[0] contains an array capable of holding 12 Book objects, and mybooks[1] contains
another array capable of storing Book objects.

Because object declarations as the one above, do not create objects, the elements of an array
of an array must be created first, before using the array in any meaningful way (see Figure 2):

mybooks[i][j] = new Book();

This is also illustrated in the example below:

class Book {

String colour;

}

public class ArrayExample {

public static void main(String[] args) {

Book mybooks [] [] = new Book[10][12]; // an array[10] of array[12]

System.out.println(mybooks[0][0]);

mybooks[0][0] = new Book();

System.out.println(mybooks[0][0]);

}

}

When the program is run it prints:

null

Book@f6a746

Note that an array of an array does not need to contain the same number of elements in
each row, as the example ArrayExample2 in the next section shows:

7 Looping over Arrays - The for-each loop

Java 1.5 introduced a new form of the for loop, which can be conveniently used to traverse
arrays and Collections (e.g. ArrayLists).

Dimitris C. Dracopoulos 7

Syntax:

for (\textit{element} : \textit{name})

\textit{statement}

where name is the name of the array or collection the elements of which need to be traversed.

The new “enhanced loop” is shown in the example below:

public class ArrayExample2 {

public static void main(String[] args) {

String a[] = new String[3];

a[0] = "aa";

a[1] = "bb";

a[2] = "cc";

System.out.println("Array a contains:");

for (String i : a)

System.out.println(i);

/* an array of an array containing different number

of elements in each row */

int myNumbers[][] = new int[][] {

{0},

{0,1},

{0,1,2},

{0,1,2,3}};

System.out.println("\nArray myNumbers contains:");

for (int[] r : myNumbers) { // for each row

for (int c : r) { // for each element in current row

System.out.print(c + " ");

}

System.out.println();

}

}

}

The above code displays:

Array a contains:

aa

bb

cc

Array myNumbers contains:

0

0 1

0 1 2

0 1 2 3

Dimitris C. Dracopoulos 8

8 Another example on arrays

Although arrays cannot change their size, variables references to arrays can be made to point
to a different array. This is shown in the code below and illustrated in Figure 3:

public class ArrayReferencesExample {

public static void main(String[] args) {

int a[] = new int[3];

a[0] = -1;

a[1] = 5;

a[2] = 4;

int b[];

b = a;

System.out.println("a is located at address " + a +

", b is located at address " + b);

a = new int[5];

for (int i=0; i < 5; i++)

a[i] = i+1;

System.out.println("After a = new int[5]");

System.out.println("a is located at address " + a +

", b is located at address " + b);

System.out.println("\na contains: ");

for (int n : a)

System.out.print(n + " ");

System.out.println("\nb contains: ");

for (int n : b)

System.out.print(n + " ");

System.out.println(); // add a newline

}

}

When the above example is run, it displays:

a is located at address [I@126b249, b is located at address [I@126b249

After a = new int[5]

a is located at address [I@f6a746, b is located at address [I@126b249

a contains:

1 2 3 4 5

b contains:

-1 5 4

Dimitris C. Dracopoulos 9

null null

nullnullnull

null

0 1 2

0

1

(a) After:

Book m [] [] = new Book[2][3];

null null

nullnull

0 1 2

0

1

Book

object
Book

object

m[1][1] = new Book();

m[0][0] = new Book();

(b) After:

Figure 2: Object elements in an array must be created explicitly, before using the array in a
useful way. In (a), an array with 2x3 declared objects is defined. This implies that the objects
have not been created yet, and the elements of the array cannot be used. In (b), elements
m[0][0] and m[1][1] are assigned to an object and from that point these elements can be used.

0x126b2490x126b249
a

b

int a[] = new int[3];

a[0] = −1;

a[1] = 5;

a[2] = 4;

−1

5

4

0xf6a746

−1

5

4

1

2

3

4

5

a) After: b) After: a = new int[5];

for (int i=0; i < 5; i++)

 a[i] = i+1;

a

b

b = a;

int b[];

Figure 3: Variables references to arrays can be changed, so as to point to a different array than
the one initially pointing to. The statements in b) are executed after the statements in a) are
executed.

Dimitris C. Dracopoulos 10

9 The Arrays class

The Arrays library class located in package java.util, provides a number of useful utilities (in
the form of static methods1 to manipulate arrays.

These include:

• Fill parts (or the whole) of the array with values.

• Compare arrays element by element

• Search.

• Sort.

Similarly with all other Java library classes, the full details of Arrays can be found in the
Java API documentation.

10 Collections vs Arrays

One might wonder why not choose a Collection class (e.g. an ArrayList) as opposed to an
array, all of the time. After all, collections provide an unlimited capacity to store elements.

The reason behind choosing arrays instead of collections, is computational efficiency. If the
number of elements to be stored in a data structure is constant, then arrays should be preferred.

The computational efficiency of arrays over collections has to do with two main reasons:

1. As collections provide an unlimited capacity, when the initial capacity that a collection
class has allocated is reached, additional memory should be allocated to increase the
capacity. The allocation of extra capacity from the JVM requires some extra CPU time.

2. Some collections, are implemented in such a way that random access of elements is not
possible. This means, that to access e.g. the third element, all elements before the third
one must be traversed. A LinkedList is implemented in this way.

This is not true for ArrayLists because their internal implementation uses an array to
store the elements. Therefore there is no time overhead associated with the random access
of an element in ArrayLists. However, because of the first reason, arrays are still more
efficient and faster than ArrayLists.

1A static method is a method which can be called directly on the class, without creating an object of the
class. For example, assuming class A contains a method called foo(), the method can be called as A.foo(). More
details on this will be given in subsequent lecture notes.

Dimitris C. Dracopoulos 11

	Collections
	The ArrayList class
	Wrappers and Storing Numbers in Collections
	Non-parameterised ArrayLists
	Arrays
	Declaring an array
	Creating an array
	Initialising Arrays

	Two Dimensional Arrays (Arrays of Arrays)
	Looping over Arrays - The for-each loop
	Another example on arrays
	The Arrays class
	Collections vs Arrays

