
5COSC019W - OBJECT ORIENTED

PROGRAMMING

Lecture 4: Heap vs Stack - Garbage Collector - The

static keyword - The final keyword - The Java class

hierarchy

Dr Dimitris C. Dracopoulos

email: d.dracopoulos@westminster.ac.uk

1 Stack vs Heap

Memory in Java is divided into two areas, the stack and the heap (Figure 1).

• Local variables (primitive types variables inside methods), data related to method calls
and returns (e.g. arguments passed to a function, return address), and intermediate cal-
culations are allocated in the stack.

• Objects are allocated in the heap.

The amount of heap size can be controlled via the -Xms and -Xmx command options of the
java utility. The java utility starts an instance of the Java Virtual Machine and executes a
program within it.

Data allocated in the heap (objects) live independent of the scope in which they were allo-
cated. For example, an object created inside a method, exists even when the execution of the
method terminates.

Example:

public class ObjectLifetime {

StringBuffer st;

public int foo() {

int i = 8;

/* object created here exists outside the method, as long

as there is still a reference to it */

1



Stack

Heap

Memory

Figure 1: Memory in Java is allocated either in the stack (local variables which are primitive
types) or in the heap (objects).

StringBuffer a = new StringBuffer("b1");

st = a;

return i;

}

public static void main(String[] args) {

ObjectLifetime ol = new ObjectLifetime();

// call method foo, on object referenced by ol

int k = ol.foo();

// update the value in object pointed to by ol

ol.st.append("5");

System.out.println("Object referenced by st: " + ol.st);

}

}

In the above example, the StringBuffer object created inside method foo() exists even
when the method returns. This is because a reference to an object (via the st variable), still
exists outside the method. As long as there are still references to an object, the object exists in
the heap.

Local variable i defined inside the method is allocated in the stack, and it does not exist
outside the method, even if the value of i is returned by the method. Recall that primitive type
variables are copied by value, while object reference variables are copied by reference. What
happens in the above example is illustrated in Figure 2.

When the ObjectLifetime code is run, it displays:

Object referenced by st contains: b15

Dimitris C. Dracopoulos 2



a) Inside foo() b) Inside main(), after foo() exits

Memory

b1a

st

(Heap)

(Stack)

k

i

??

8

??
Memory

b1a

st

(Heap)

(Stack)i 88

Figure 2: The lifetime of objects, as shown in the ObjectLifetime example. Objects created
inside methods still exist outside of them, assuming there are references to the object outside
the method.

2 The Garbage Collector

It is necessary to free data which are no longer needed from memory. This will ensure that
memory will not become full, and there is always available space to allocate more data. In
programming languages there are two ways to deallocate (free) memory:

• The programmer deallocates memory explicitly (C, C++).

• The system is responsible to free (recycle) unused memory. This is done using a process
called as garbage collector (Java).

The Java garbage collector frees an object from the heap, only when there are no more
references to that object.

• The caveat is that the programmer cannot control when the garbage collector starts its
execution. This implies that even objects which have no references will remain in memory
(heap), until the Java Virtual Machine (JVM) decides to execute the garbage collector.

There is no guarantee that the garbage collector will run during the lifetime of a program.
The JVM will run the garbage collector only when it thinks it is appropriate, e.g. when
the available heap size goes low.

Dimitris C. Dracopoulos 3



Example:

class Book {

private String colour;

}

public class GarbageCollectorExample {

public static void main(String[] args) {

Book b1 = new Book(); // Book object created

Book b2 = b1; // 2 references to the same Book object

Book b3 = b2; // 3 references to the same Book object

/* After the following statement:

3 references (b1, b2, b3) to the first Book object -

1 reference to the second book object (b4) */

Book b4 = new Book();

b1 = null; // 2 references to first object

b2 = null; // 1 reference to first object

b3 = null; // 0 references to first object - candidate for garbage collection

}

}

Figure 3 shows what happens in the above code. As soon as there are zero references to the
Book object created in the first line of main(), the object becomes a candidate to be recycled
(freed) by the garbage collector. This will happen (the memory addresses occupied by the object
will be released to the pool of free heap space), when the garbage collector runs next.

3 Static Methods

A method declared as static can be called on a class, without the need to create an object of
a class. Static methods are sometimes called class methods.

class A {

static int bar() {

System.out.println("bar() called!");

return 0;

}

}

public class StaticMethodsExample {

public static void main(String[] args) {

A.bar(); // OK. No need to create an object

A a1= new A();

a1.bar(); // OK too!

Dimitris C. Dracopoulos 4



(a) After: (b) After: b1 = null;

b2 = null;

Book b1 = new Book();

b2 = b1;

b3 = b2

Book b4 = new Book();

b3 = null;

book object 1

Memory

b2

b3

b4 book object 2

b1book object 1

Memory

b2

b3

b4 book object 2

b1

Figure 3: What happens during the execution of the GarbageCollectorExample code. The
object created in the first line of main will become a candidate to be released, as soon as there
are no references to it, i.e. in stage (b).

Dimitris C. Dracopoulos 5



}

}

As the example indicates, a static method can also be called on an object of the class.

Methods should be static when the function they perform is not associated with an individual
object, but rather with the class itself. It is common to have static methods in utility classes.
For example, consider a class Calculator providing methods add(int, int), substract(int,
int), etc. Such methods do not depend on objects of the class, but they are used to perform
arithmetic operations between their arguments. Therefore, they should be declared as static.

4 Static Data

Class fields which are declared static, are shared among all objects of the class. This means,
that a single instance of the field will be created, independent of the number of objects of the
class. This is illustrated in the example below, and shown in Figure 4.

class Book {

static int numberOfBooks;

int numberOfPages;

Book(int pages) {

++numberOfBooks;

numberOfPages = pages;

}

}

public class StaticFieldsExample {

public static void main(String[] args) {

Book b1 = new Book(10);

Book b2 = new Book(20);

Book b3 = new Book(5);

System.out.println("b1.numberOfBooks: " + b1.numberOfBooks);

System.out.println("b2.numberOfBooks: " + b2.numberOfBooks);

System.out.println("b3.numberOfBooks: " + b3.numberOfBooks);

System.out.println("Book.numberOfBooks: " + Book.numberOfBooks);

System.out.println("b1.numberOfPages :" + b1.numberOfPages);

System.out.println("b2.numberOfPages :" + b2.numberOfPages);

System.out.println("b3.numberOfPages :" + b3.numberOfPages);

// System.out.println(Book.numberOfPages); // Error!

}

}

The output of the StaticFieldsExample is:

Dimitris C. Dracopoulos 6



Memory

b1.numberOfPages

b2.numberOfPages

b3.numberOfPages

2

20

5

10

1 3

b3.numberOfBooks

b1.numberOfBooks

b2.numberOfBooks

Book.numberOfBooks

Figure 4: Static fields are shared among all objects of a class. Non-static fields (instance fields)
are unique for each object of the class.

b1.numberOfBooks: 3

b2.numberOfBooks: 3

b3.numberOfBooks: 3

Book.numberOfBooks: 3

b1.numberOfPages :10

b2.numberOfPages :20

b3.numberOfPages :5

5 Final Classes and Methods

The keyword final can be used for the following:

• final variables: these are constants, i.e. their value cannot be changed.

• final classes: these classes cannot be used as a base for another class. You cannot inherit
from a final class.

• final methods: these cannot be overridden in a subclass.

Example:

final class Patent {

Dimitris C. Dracopoulos 7



}

class MyPatent extends Patent { } // Error! Cannot inherit from final class

class Calculator {

final int increaseByOne(int x) {

return x+1;

}

}

class MyCalculator extends Calculator {

int increaseByOne(int x) { // Error! Cannot override final method

return x+5;

}

}

class MyInteger {

public int i;

}

public class FinalExample {

public static void main(String[] args) {

final MyInteger m1 = new MyInteger();

m1 = new MyInteger(); // Error! m1 is constant

m1.i = 5; // OK

}

}

As illustrated in the example above, a final object reference variable cannot be changed so as
to point to a different variable. However, the contents of the object that the variable is pointing
to, can be changed (assuming that the object itself is mutable).

6 The Java class hierarchy

The parent of every Java class (whether user defined or library) is class Object. This means
that all the methods found in Object are inherited by every class.

It should be noted that as Java does not support multiple inheritance (i.e. a class can only
inherit from a single class directly), the above implies that Object is the direct or indirect parent
class of any Java class. For example, in Figure 5 Object is an indirect parent class of ArrayList
(its direct parent class is AbstractList).

7 Order of Object Initialisation

The following series of events occur during the creation of an object:

Dimitris C. Dracopoulos 8



Object

ThrowableBankAccount

ExceptionSavingsAccountCheckingAccount

ArrayList

AbstractCollection

AbstractList

String

Figure 5: The parent of every Java class is class Object.

1. Sufficient memory is allocated in the heap to hold the object. (including all instance
variables specific to the object and all instance variables of its superclass - and since the
superclass inherits all instance fields from its superclass enough memory is allocated to
include the data of its super-superclass, etc.). It should be noted that any user specified
initialisation values are not assigned to the fields at this point (see Step 4).

2. All instance variables of the object are initialised to their default values, i.e. all field
objects to nulls, primitive numerics to zero and booleans to false.

3. The default constructor (i.e. the constructor with no arguments) of the direct superclass of
the object is called. The constructor of the superclass will invoke the default constructor
of its own superclass and so on, until the constructor of the parent class of all classes
java.lang.Object is called.

4. The user specified initialisation values of the instance variables are assigned to them and
any initialisation blocks are executed.

5. The actual body of the constructor is executed.

Example:

The following example illustrates the sequential execution of the above steps during the creation
of an object of class TimeTravel:

Dimitris C. Dracopoulos 9



class SpaceTravel extends Travel {

private float distance = 5000;

SpaceTravel() {

System.out.println("SpaceTravel() constructor!");

}

}

class TimeTravel extends SpaceTravel {

private String timeElapsed = "0 years";

// initialisation block

{

System.out.println("Initialisation block");

}

TimeTravel() {

System.out.println("TimeTravel() constructor!");

}

}

public class Travel {

Travel() {

System.out.println("Travel() constructor!");

}

public static void main(String[] args) {

TimeTravel t = new TimeTravel();

}

}

When the example is run it produces the output:

Travel() constructor!

SpaceTravel() constructor!

Initialisation block

TimeTravel() constructor!

The sequence of events which take place when the statement TimeTravel t = new TimeTravel()

is encountered:

1. Memory is allocated in the heap to hold an object of class TimeTravel.

2. The object’s instance variables, i.e. timeElapsed are initialised to their default values, so
timeElapsed is assigned the null value.

3. The constructor of TimeTravel is called. Before doing anything else, this calls the default
constructor of its superclass SpaceTravel.

Dimitris C. Dracopoulos 10



4. The instance variable of SpaceTravel distance is initialised to its default value 0.

5. The constructor of SpaceTravel calls its superclass default constructor Travel and the
body of that constructor is executed printing the string “Travel() constructor!”.

6. The constructor of Travel returns and the instance variable distance is initialised to
5000.

7. The body of the constructor SpaceTravel is executed, printing the message “SpaceTravel()
constructor!”.

8. The constructor of SpaceTravel returns, and the instance variable of TimeTravel timeE-
lapsed is initialised to the string “0 years”.

9. The initialisation block in TimeTravel is executed, printing the message “Initialisation
block”.

10. The body of the constructor of TimeTravel is executed, producing the string “Time-
Travel() constructor!”.

Dimitris C. Dracopoulos 11


	Stack vs Heap
	The Garbage Collector
	Static Methods
	Static Data
	Final Classes and Methods
	The Java class hierarchy
	Order of Object Initialisation

