
Dimitris C. Dracopoulos 1/18

5COSC019W - OBJECT ORIENTED
PROGRAMMING

Lecture 4: Heap vs Stack - Garbage Collector -
The static keyword - The final keyword - The

Java class hierarchy

Dr Dimitris C. Dracopoulos



Dimitris C. Dracopoulos 2/18

Stack vs Heap

I Local variables (primitive types variables inside methods),
data related to method calls and returns (e.g. arguments
passed to a function, return address), and intermediate
calculations are allocated in the stack.

I Objects are allocated in the heap.

Stack

Heap

Memory



Dimitris C. Dracopoulos 3/18

Heap Allocation

Data allocated in the heap (objects) live independent of the scope
in which they were allocated. For example, an object created inside
a method exists even when the execution of the method terminates.
Example:

public class ObjectLifetime {

StringBuffer st;

public int foo() {

int i = 8;

/* object created here exists outside the method, as long

as there is still a reference to it */

StringBuffer a = new StringBuffer("b1");

st = a;

return i;

}



Dimitris C. Dracopoulos 4/18

public static void main(String[] args) {

ObjectLifetime ol = new ObjectLifetime();

// call method foo, on object referenced by ol

int k = ol.foo();

// update the value in object pointed to by ol

ol.st.append("5");

System.out.println("Object referenced by st: " + ol.st);

}

}

a) Inside foo() b) Inside main(), after foo() exits

Memory

b1a

st

(Heap)

(Stack)

k

i

??

8

??
Memory

b1a

st

(Heap)

(Stack)i 88



Dimitris C. Dracopoulos 5/18

The Garbage Collector

In programming languages there are two ways to deallocate (free)
memory:

I The programmer deallocates memory explicitly (C, C++).

I The system is responsible to free (recycle) unused memory.
This is done using a process called as garbage collector (Java).

The Java garbage collector frees an object from the heap, only
when there are no more references to that object.

I The caveat is that the programmer cannot control when the
garbage collector starts its execution. This implies that
objects which have no references will remain in memory
(heap) until the Java Virtual Machine (JVM) decides to
execute the garbage collector.



Dimitris C. Dracopoulos 6/18

Example:
class Book {

private String colour;

}

public class GarbageCollectorExample {

public static void main(String[] args) {

Book b1 = new Book(); // Book object created

Book b2 = b1; // 2 references to the same Book object

Book b3 = b2; // 3 references to the same Book object

/* After the following statement:

3 references (b1, b2, b3) to the first Book object -

1 reference to the second book object (b4) */

Book b4 = new Book();

b1 = null; // 2 references to first object

b2 = null; // 1 reference to first object

b3 = null; // 0 references to first object -

// candidate for garbage collection

}

}



Dimitris C. Dracopoulos 7/18

(a) After: (b) After: b1 = null;

b2 = null;

Book b1 = new Book();

b2 = b1;

b3 = b2

Book b4 = new Book();

b3 = null;

book object 1

Memory

b2

b3

b4 book object 2

b1book object 1

Memory

b2

b3

b4 book object 2

b1



Dimitris C. Dracopoulos 8/18

Static Methods
A method declared as static can be called on a class without the
need to create an object of a class. Static methods are sometimes
called class methods.

class A {

static int bar() {

System.out.println("bar() called!");

return 0;

}

}

public class StaticMethodsExample {

public static void main(String[] args) {

A.bar(); // OK. No need to create an object

A a1= new A();

a1.bar(); // OK too!

}

}



Dimitris C. Dracopoulos 9/18

Static Data

Class fields which are static are shared among all objects of the
class. This means, that a single instance of the field will be
created, independent of the number of objects of the class.

class Book {

static int numberOfBooks;

int numberOfPages;

Book(int pages) {

++numberOfBooks;

numberOfPages = pages;

}

}



Dimitris C. Dracopoulos 10/18

public class StaticFieldsExample {

public static void main(String[] args) {

Book b1 = new Book(10);

Book b2 = new Book(20);

Book b3 = new Book(5);

System.out.println("b1.numberOfBooks: " + b1.numberOfBooks);

System.out.println("b2.numberOfBooks: " + b2.numberOfBooks);

System.out.println("b3.numberOfBooks: " + b3.numberOfBooks);

System.out.println("Book.numberOfBooks: " + Book.numberOfBooks);

System.out.println("b1.numberOfPages :" + b1.numberOfPages);

System.out.println("b2.numberOfPages :" + b2.numberOfPages);

System.out.println("b3.numberOfPages :" + b3.numberOfPages);

// System.out.println(Book.numberOfPages); // Error!

}

}

Memory

b1.numberOfPages

b2.numberOfPages

b3.numberOfPages

2

20

5

10

1 3

b3.numberOfBooks

b1.numberOfBooks

b2.numberOfBooks

Book.numberOfBooks



Dimitris C. Dracopoulos 11/18

The output of the StaticFieldsExample is:

b1.numberOfBooks: 3

b2.numberOfBooks: 3

b3.numberOfBooks: 3

Book.numberOfBooks: 3

b1.numberOfPages :10

b2.numberOfPages :20

b3.numberOfPages :5



Dimitris C. Dracopoulos 12/18

Final Classes and Methods

The keyword final can be used for the following:

I final variables: these are constants, i.e. their value cannot be
changed.

I final classes: these classes cannot be used as a base for
another class. You cannot inherit from a final class.

I final methods: these cannot be overridden in a subclass.



Dimitris C. Dracopoulos 13/18

Example:

final class Patent {

}

class MyPatent extends Patent { } // Error! Cannot inherit from

// final class

class Calculator {

final int increaseByOne(int x) {

return x+1;

}

}

class MyCalculator extends Calculator {

int increaseByOne(int x) { // Error! Cannot override

return x+5; // final method

}

}



Dimitris C. Dracopoulos 14/18

class MyInteger {

public int i;

}

public class FinalExample {

public static void main(String[] args) {

final MyInteger m1 = new MyInteger();

m1 = new MyInteger(); // Error! m1 is constant

m1.i = 5; // OK

}

}



Dimitris C. Dracopoulos 15/18

The Java class hierarchy

The parent of every Java class is class Object.

Object

ThrowableBankAccount

ExceptionSavingsAccountCheckingAccount

ArrayList

AbstractCollection

AbstractList

String



Dimitris C. Dracopoulos 16/18

Order of Object Initialisation

The following happen during the creation of an object:

1. Sufficient memory is allocated in the heap to hold the object.

2. All instance variables of the object are initialised to their
default values, i.e. all field objects to nulls, primitive numerics
to zero and booleans to false.

3. The default constructor (i.e. the constructor with no
arguments) of the direct superclass of the object is called.
The constructor of the superclass will invoke the constructor
of its own superclass and so on, until the constructor of the
parent class of all classes java.lang.Object is called.

4. The user specified initialisation values of the instance variables
are assigned to them and any initialisation blocks are
executed.

5. The actual body of the constructor is executed.



Dimitris C. Dracopoulos 17/18

Example:
public class Travel {

Travel() {

System.out.println("Travel() constructor!");

}

}

class SpaceTravel extends Travel {

private float distance = 5000;

SpaceTravel() {

System.out.println("SpaceTravel() constructor!");

}

}

class TimeTravel extends SpaceTravel {

private String timeElapsed = "0 years";

// initialisation block

{

System.out.println("Initialisation block");

}

TimeTravel() {

System.out.println("TimeTravel() constructor!");

}



Dimitris C. Dracopoulos 18/18

public static void main(String[] args) {

TimeTravel t = new TimeTravel();

}

}

When the example is run it produces the output:

Travel() constructor!

SpaceTravel() constructor!

Initialisation block

TimeTravel() constructor!


