5COSC019W - OBJECT ORIENTED
PROGRAMMING
Lecture 2: More on Classes

Dr Dimitris C. Dracopoulos

OBJECT ORIENTED PROGRAM

object A

an instance of class X

calling amethod on A

object C
an instance of c|

ng a method on C

an instance of class Z

Class X

Class Y

Class Z

Constructing Objects

Objects of a class are created by calling the constructor of the
class with the new operator.
» Constructors are methods of the class and they always have
the same name with the class itself.
» A class can have more than one constructors. Each one of
them must have a different number (and/or type) of
parameters.

Syntax:

new ClassName(parameters)

Constructor Example: The Rectangle Library class

The Rectangle class is defined in the library (package java.awt).
> A Rectangle object contains a set of numbers specifying an
area in a coordinate space by its top-left point (x,y), its

width, and its height.
Rectangle rl = new Rectangle(5, 10, 20, 30);

1. The constructor of the Rectangle class accepting four ints
as parameters is called, to create a Rectangle object.

2. The created object has a top left corner at (5,10) and has a
width equal to 20 and a height equal to 30.

3. The created object is returned and it is stored (its address) in
variable r1.

An alternative constructor of the Rectangle class could be called
to create an object:

Rectangle r2 = new Rectangle();

The no-arguments constructor, creates a Rectangle object whose
top-left corner is at (0, 0) in the coordinate space, and whose
width and height are both zero

Packages

Classes (including library classes) belong to a package. Thus, a
package is a collection of classes.

P> To be able to use a class belonging to a package in a
program, the class must first be imported in the program.
There are two ways to do that:

1. Import all the classes of the package into the program, e.g.
import java.awt.*;

2. Import only the class that needs to be used, e.g.
import java.awt.Rectangle;

Example

import java.awt.Rectangle;

public class MoveTester {
public static void main(String[] args) {
Rectangle box = new Rectangle(5, 10, 20, 30);

// Move the rectangle
box.translate(15, 25);

// Print information about the moved rectangle
System.out.println("After moving, the top-left corner is:");
System.out.println(box.getX() + ", " + box.getY());

Implementing Classes

Implement a class which simulates a bank account. The following
operations must be available (abstraction):

» Deposit money.
> Withdraw money.

» Get the current balance.

VAL
A bank account has a balance that can be changed by
deposits and withdrawals.

*/

public class BankAccount {
private double balance;

J*x
Constructs a bank account with a zero balance.
*/
public BankAccount ()
{
balance = 0;
}
VAL:
Constructs a bank account with a given balance.
@param initialBalance the initial balance
*/

public BankAccount(double initialBalance)
{
balance = initialBalance;

}

J**
Deposits money into the bank account.
@param amount the amount to depostit */
public void deposit(double amount)

{
double newBalance = balance + amount;
balance = newBalance;

}

J**
Withdraws money from the bank account.
@param amount the amount to withdraw

*/

public void withdraw(double amount)

{
double newBalance = balance - amount;
balance = newBalance;

}

VALd
Gets the current balance of the bank account.
@return the current balance

*/

public double getBalance()

{

return balance;

}

Testing a Class

/%%
A class to test the BankAccount class.
*/
public class BankAccountTester {
VL]
Tests the methods of the BankAccount class.
*/
public static void main(String[] args) {
BankAccount harrysChecking = new BankAccount();
harrysChecking.deposit (2000) ;
harrysChecking.withdraw(500) ;
System.out.println(harrysChecking.getBalance());
BankAccount harrysSavings = new BankAccount(100);
harrysSavings.withdraw(30);
harrysSavings.withdraw(10);
harrysSavings.deposit(20);
double balance = harrysSavings.getBalance();
System.out.println("Savings account balance: " + balance);
¥

}

When the above program is run, it displays:

1500.0

Savings account balance: 80.0

Overloading Methods

A class can have more than one methods with the same name,
assuming that these methods have a different signature.

» The signature of a method consists of the combination of its
name and its arguments (the specific order, number and type
of arguments)

Example

public class Printer {
int errorCode;

// constructor 1
public Printer() {
System.out.println("Constructor with no arguments called!");

}

// constructor 2
public Printer(int i) {
errorCode = ij;
System.out.println("Constructor with an int argument called!");

}

public void display() {
System.out.println(errorCode) ;

}

public void display(int i) {
System.out.println(i);
}

public void display(String s) {
System.out.println(s);
}

public void display(int i, String s) {
System.out.println(i + s);

}

public void display(String s, int i) {
System.out.println(i + s);

}

Inheritance
Hierarchies of class can be created for the following reasons:
» Reusability of code (Reusability of the functionality of existing
classes).
» Code is easier to maintain.
» Polymorphic behaviour (objects are manipulated via reference
variables of the base class).

Animal

Dog Cat

Example:

class Person {
private String name;

public Person() {
}

public Person(String namel) {
name = namel;

}

// initialise the name instance field of the object
public void setName(String name) {

/% this is a shortcut for the object we are currently in.
Thus, this.name ts the instance field name within the
current object */

this.name = name;

}

// prints all information about the object
public void info() {
System.out.println("\nname: " + name);

}

class Student extends Person {
private String school;

public Student(String school, String name) {
this.school = school;
setName (name) ;

}

// prints all information about the object
public void info() {
// call info() method of Person class
super.info();
System.out.println("school: " + school);

3

class PostGraduateStudent extends Student {
private String firstDegree; // what the first degree was on \pause

public PostGraduateStudent(String school, String name,
String degree) {
super (school, name); // call constructor of parent class
firstDegree = degree; }

public void info() {
super.info();
System.out.println("firstDegree: " + firstDegree);

public class University {
public static void main(String[] args) {
Student s1 = new Student("IC", "John");
Student s2 = new Student("MIT", "Helen");
PostGraduateStudent s3 = new PostGraduateStudent(

"Westminster",
"George",
"music");

sl.info();

s2.info();

s3.info();

When the above program is run, it displays:

name: John
school: IC

name: Helen
school: MIT

name: George
school: Westminster
firstDegree: music

Overriding Methods

When a class defines a method with the same signature as a
method in a parent class, the method is overridden in the subclass.

P> Student overrides the info method with its own
implementation (initially it inherits the Person version of
info.

P> PostGraduateStudent overrides the info method with its
own implementation (initially it inherits the Student version
of info).

The super keyword

The super keyword can be used for three purposes:

» To call a constructor of the parent class. In such a case, the
super call must be the first statement in the constructor of

the subclass:

public PostGraduateStudent(String school, String name, String degree) {
super (school, name);
firstDegree = degree;

¥
The first line in the above constructor calls the constructor
Student (String, String) of the parent class.
» To call any method of the parent class, even if that method is
overridden in the current class.

P> To access a field of the parent class. For example, super.x in
class B accesses the A instance field x:

class A {
public int x;

3

class B extends A {
public int x;

void foo() {
int y = super.x; // accesses z within A, NOT z in B!

3

