
Dimitris C. Dracopoulos 1/22

5COSC019W - OBJECT ORIENTED
PROGRAMMING

Lecture 2: More on Classes

Dr Dimitris C. Dracopoulos

Dimitris C. Dracopoulos 2/22

object A Class X

object B

calling a method on A

object C

an instance of class Y

Class Y

Class Zcalling a method on Cobject D

an instance of class Z

another instance of class X

an instance of class X

OBJECT ORIENTED PROGRAM

Dimitris C. Dracopoulos 3/22

Constructing Objects

Objects of a class are created by calling the constructor of the
class with the new operator.

I Constructors are methods of the class and they always have
the same name with the class itself.

I A class can have more than one constructors. Each one of
them must have a different number (and/or type) of
parameters.

Syntax:

new ClassName(parameters)

Dimitris C. Dracopoulos 4/22

Constructor Example: The Rectangle Library class

The Rectangle class is defined in the library (package java.awt).

I A Rectangle object contains a set of numbers specifying an
area in a coordinate space by its top-left point (x , y), its
width, and its height.

Rectangle r1 = new Rectangle(5, 10, 20, 30);

1. The constructor of the Rectangle class accepting four ints
as parameters is called, to create a Rectangle object.

2. The created object has a top left corner at (5, 10) and has a
width equal to 20 and a height equal to 30.

3. The created object is returned and it is stored (its address) in
variable r1.

Dimitris C. Dracopoulos 5/22

An alternative constructor of the Rectangle class could be called
to create an object:

Rectangle r2 = new Rectangle();

The no-arguments constructor, creates a Rectangle object whose
top-left corner is at (0, 0) in the coordinate space, and whose
width and height are both zero

Dimitris C. Dracopoulos 6/22

Packages

Classes (including library classes) belong to a package. Thus, a
package is a collection of classes.
I To be able to use a class belonging to a package in a

program, the class must first be imported in the program.
There are two ways to do that:

1. Import all the classes of the package into the program, e.g.

import java.awt.*;

2. Import only the class that needs to be used, e.g.

import java.awt.Rectangle;

Dimitris C. Dracopoulos 7/22

Example

import java.awt.Rectangle;

public class MoveTester {

public static void main(String[] args) {

Rectangle box = new Rectangle(5, 10, 20, 30);

// Move the rectangle

box.translate(15, 25);

// Print information about the moved rectangle

System.out.println("After moving, the top-left corner is:");

System.out.println(box.getX() + ", " + box.getY());

}

}

Dimitris C. Dracopoulos 8/22

Implementing Classes

Implement a class which simulates a bank account. The following
operations must be available (abstraction):

I Deposit money.

I Withdraw money.

I Get the current balance.

Dimitris C. Dracopoulos 9/22

/**

A bank account has a balance that can be changed by

deposits and withdrawals.

*/

public class BankAccount {

private double balance;

/**

Constructs a bank account with a zero balance.

*/

public BankAccount()

{

balance = 0;

}

/**

Constructs a bank account with a given balance.

@param initialBalance the initial balance

*/

public BankAccount(double initialBalance)

{

balance = initialBalance;

}

Dimitris C. Dracopoulos 10/22

/**

Deposits money into the bank account.

@param amount the amount to deposit */

public void deposit(double amount)

{

double newBalance = balance + amount;

balance = newBalance;

}

/**

Withdraws money from the bank account.

@param amount the amount to withdraw

*/

public void withdraw(double amount)

{

double newBalance = balance - amount;

balance = newBalance;

}

/**

Gets the current balance of the bank account.

@return the current balance

*/

public double getBalance()

{

return balance;

}

}

Dimitris C. Dracopoulos 11/22

Testing a Class
/**

A class to test the BankAccount class.

*/

public class BankAccountTester {

/**

Tests the methods of the BankAccount class.

*/

public static void main(String[] args) {

BankAccount harrysChecking = new BankAccount();

harrysChecking.deposit(2000);

harrysChecking.withdraw(500);

System.out.println(harrysChecking.getBalance());

BankAccount harrysSavings = new BankAccount(100);

harrysSavings.withdraw(30);

harrysSavings.withdraw(10);

harrysSavings.deposit(20);

double balance = harrysSavings.getBalance();

System.out.println("Savings account balance: " + balance);

}

}

When the above program is run, it displays:
1500.0

Savings account balance: 80.0

Dimitris C. Dracopoulos 12/22

Overloading Methods

A class can have more than one methods with the same name,
assuming that these methods have a different signature.

I The signature of a method consists of the combination of its
name and its arguments (the specific order, number and type
of arguments)

Dimitris C. Dracopoulos 13/22

Example
public class Printer {

int errorCode;

// constructor 1

public Printer() {

System.out.println("Constructor with no arguments called!");

}

// constructor 2

public Printer(int i) {

errorCode = i;

System.out.println("Constructor with an int argument called!");

}

public void display() {

System.out.println(errorCode);

}

public void display(int i) {

System.out.println(i);

}

public void display(String s) {

System.out.println(s);

}

Dimitris C. Dracopoulos 14/22

public void display(int i, String s) {

System.out.println(i + s);

}

public void display(String s, int i) {

System.out.println(i + s);

}

}

Dimitris C. Dracopoulos 15/22

Inheritance
Hierarchies of class can be created for the following reasons:
I Reusability of code (Reusability of the functionality of existing

classes).
I Code is easier to maintain.
I Polymorphic behaviour (objects are manipulated via reference

variables of the base class).

Dog Cat

Animal

Dimitris C. Dracopoulos 16/22

Example:

class Person {

private String name;

public Person() {

}

public Person(String name1) {

name = name1;

}

// initialise the name instance field of the object

public void setName(String name) {

/* this is a shortcut for the object we are currently in.

Thus, this.name is the instance field name within the

current object */

this.name = name;

}

// prints all information about the object

public void info() {

System.out.println("\nname: " + name);

}

}

Dimitris C. Dracopoulos 17/22

class Student extends Person {

private String school;

public Student(String school, String name) {

this.school = school;

setName(name);

}

// prints all information about the object

public void info() {

// call info() method of Person class

super.info();

System.out.println("school: " + school);

}

}

class PostGraduateStudent extends Student {

private String firstDegree; // what the first degree was on \pause

public PostGraduateStudent(String school, String name,

String degree) {

super(school, name); // call constructor of parent class

firstDegree = degree; }

public void info() {

super.info();

System.out.println("firstDegree: " + firstDegree);

}

}

Dimitris C. Dracopoulos 18/22

public class University {

public static void main(String[] args) {

Student s1 = new Student("IC", "John");

Student s2 = new Student("MIT", "Helen");

PostGraduateStudent s3 = new PostGraduateStudent(

"Westminster",

"George",

"music");

s1.info();

s2.info();

s3.info();

}

}

Dimitris C. Dracopoulos 19/22

When the above program is run, it displays:

name: John

school: IC

name: Helen

school: MIT

name: George

school: Westminster

firstDegree: music

Dimitris C. Dracopoulos 20/22

Overriding Methods

When a class defines a method with the same signature as a
method in a parent class, the method is overridden in the subclass.

I Student overrides the info method with its own
implementation (initially it inherits the Person version of
info.

I PostGraduateStudent overrides the info method with its
own implementation (initially it inherits the Student version
of info).

Dimitris C. Dracopoulos 21/22

The super keyword

The super keyword can be used for three purposes:

I To call a constructor of the parent class. In such a case, the
super call must be the first statement in the constructor of
the subclass:
public PostGraduateStudent(String school, String name, String degree) {

super(school, name);

firstDegree = degree;

}

The first line in the above constructor calls the constructor
Student(String, String) of the parent class.

I To call any method of the parent class, even if that method is
overridden in the current class.

I To access a field of the parent class. For example, super.x in
class B accesses the A instance field x:

Dimitris C. Dracopoulos 22/22

class A {

public int x;

}

class B extends A {

public int x;

void foo() {

int y = super.x; // accesses x within A, NOT x in B!

}

}

